Self Studies

Number Theory Test 29

Result Self Studies

Number Theory Test 29
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The expression $$\dfrac {(1 + i)^{n}}{(1 - i)^{n - 2}}$$ equals.
    Solution
    $$(1 - i) = (1-i)\times \dfrac{(1+i)}{(1+i)} = \dfrac{1-i^{2}}{(1+i)} = \dfrac {2}{(1 + i)}$$
    $$\therefore \dfrac {(1 + i)^{n}}{(1 - i)^{n - 2}} = \dfrac {(1 + i)^{n}}{2^{n - 2}} . (1 + i)^{n - 2}$$ 
                             $$= \dfrac {(1 + i)^{2(n - 1)}}{2^{n - 2}}$$ 

                             $$= \dfrac {(1+i^{2}+2i)^{n - 1}}{2^{n - 2}}$$ 

                             $$= \dfrac {(2i)^{n - 1}}{2^{n - 2}}$$ 
                             $$= 2i^{n - 1} = -2i^{n + 1}$$
    Hence, $$\therefore \dfrac {(1 + i)^{n}}{(1 - i)^{n - 2}} = - 2 i^{n+1}$$
  • Question 2
    1 / -0
    Given : $$u = 1+i \sqrt{3}$$ and $$v = \sqrt{3} + i$$

    Calculate $$\dfrac{u^3 }{ v^4}$$

    Solution
    $$u=1+i\sqrt 3 \implies \sqrt{1+3}e^{i(\tan^{-1}\sqrt 3)}\\ \implies 2e^{i\pi/3}$$
    $$v=i+\sqrt 3 \implies \sqrt{1+3}e^{i(\tan^{-1} 1/\sqrt 3)}\\ \implies 2e^{i\pi/6}$$
    $$\cfrac{u^3}{v^4}=\cfrac{2^3e^{i\pi}}{2^4e^{2i\pi/3}}=(1/2)e^{-i\pi/3}$$
    $$\implies \cfrac{1}{2} [\cos(\pi/3)-i \sin(\pi/3)] \implies \cfrac{1}{2}(\cfrac{1}{2}-\cfrac{i\sqrt 3}{2})$$
    $$ \implies (\cfrac{1}{4}-\cfrac{i\sqrt 3}{4})$$
  • Question 3
    1 / -0
    If $$z_1$$ and $$z_2$$ are complex numbers with $$|z_1|=|z_2|$$, then which of the following is/are correct?
    1. $$z_1=z_2$$
    2. Real part of $$z_1 =$$ Real part of $$z_2$$
    3. Imaginary part of $$z_1 =$$ Imaginary part of $$z_2$$
    Select the correct answer using the statements given below :
    Solution
    Solution:
    We have, $$|z_1|=|z_2|$$
    Let, 
    $$z_1=x_1+iy_1$$ and $$z_2=x_2+iy_2$$
    $$\because|z_1|=|z_2|$$
    $$\therefore x_1^2+y_1^2=x_2^2+y_2^2$$
    or, $$(x_1^2-x_2^2)+(y_1^2-y_2^2)=0$$
    or, $$x_1^2-x_2^2=0$$ and $$y_1^2-y_2^2=0$$
    or, $$x_1=\pm x_2$$ and $$y_1=\pm y_2$$
    Let, $$z_1=1+i$$ then $$z_2=-1-i$$
    $$|z_1|=|z_2|=\sqrt2$$
    But, $$Re(z_1)\neq Re(z_2)$$ and $$Im(z_1)\neq Im(z_2)$$ and $$z_1\neq z_2$$
    Hence, D is the correct option.
  • Question 4
    1 / -0
    $$p + iq = (2 - 3i) (4 + 2i)$$ then $$q$$ is
    Solution
    $$p+iq=(2-3i)(4+2i)$$
    $$=(8+4i-12i+6)$$
    $$=14-8i$$
    Hence comparing the real parts give us $$p=14$$ and comparison of the imaginary parts give us $$q=-8$$. 
  • Question 5
    1 / -0
    Two complex numbers are represented by ordered pairs $$z_1: (a,0)\ \&\  z_2: (c,d)$$, which of the following is correct simplification for $$z_1\times z_2=$$?
    Solution
    $$z_1$$ : (a,0) = a + 0i = a
    $$z_2$$ : (c,d) = c + id

    $$\therefore$$ $$z_1\times z_2$$ = (a)(c + id)

    = ac + i(ad) = (ac , ad)

    Hence, option C is correct.
  • Question 6
    1 / -0
    If $${ x }^{ 2 }+{ y }^{ 2 }=1$$ then value of $$\dfrac { 1+x+iy }{ 1+x-iy } $$ is
    Solution
    Since $$x^2+y^2=1$$
    So let $$x=\cos\theta$$ and $$y=\sin\theta$$
    $$\therefore \dfrac{1+x+iy}{1+x-iy}=\dfrac{(1+\cos\theta)+i\sin\theta}{(1+\cos\theta)-i\sin\theta}$$

    $$=\dfrac{2\cos^2\cfrac{\theta}{2}+2i\sin\cfrac{\theta}{2}\cos\cfrac{\theta}{2}}{2\cos^2\cfrac{\theta}{2}-2i\sin\cfrac{\theta}{2}\cos\cfrac{\theta}{2}}$$

    $$=\dfrac{\cos\cfrac{\theta}{2}+i\sin\cfrac{\theta}{2}}{\cos\cfrac{\theta}{2}-i\sin\cfrac{\theta}{2}}$$ 

    $$=\dfrac{\cos\cfrac{\theta}{2}+i\sin\cfrac{\theta}{2}}{\cos\cfrac{\theta}{2}-i\sin\cfrac{\theta}{2}}\times$$ $$\dfrac{\cos\cfrac{\theta}{2}+i\sin\cfrac{\theta}{2}}{\cos\cfrac{\theta}{2}+i\sin\cfrac{\theta}{2}}$$

    $$=\dfrac{\left(\cos\cfrac{\theta}{2}+i\sin\cfrac{\theta}{2}\right)^2}{\cos^2\cfrac{\theta}{2}-i^2\sin^2\cfrac{\theta}{2}}$$

    $$=\dfrac{\cos^2\cfrac{\theta}{2}+i^2\sin^2\cfrac{\theta}{2}+2i\cos\cfrac{\theta}{2}\cos\cfrac{\theta}{2}}{\cos^2\cfrac{\theta}{2}+\sin^2\cfrac{\theta}{2}}$$

    $$=\dfrac{\cos^2\cfrac{\theta}{2}-\sin^2\cfrac{\theta}{2}+2i\cos\cfrac{\theta}{2}\cos\cfrac{\theta}{2}}{1}$$

    $$=\cos\theta+i\sin\theta=x+iy$$
  • Question 7
    1 / -0
    The value of $$ \sum _{ k=0 }^{ n }{ (i^k + i^{k+1} ) } , $$ where $$ i^2 = -1 ,$$ is equal to :
    Solution
    The value of $$ \sum _{ k=0 }^{ n }{ (i^k + i^{k+1} ) } =  \sum _{ k=0 }^{ n }{ i^k ( {i +1} ) }  $$ is, 
    $$ = (i+1) \left[ \dfrac {1(1-i^{n+1})} {(1-i)} \right] \times \dfrac {1+i}{1+i} $$
    $$ = \dfrac {(1+i)^2 }{1+1} = \dfrac {(1-1+2i)(1-i^{n+1} )}{2} $$
    $$ = \dfrac {2i}{2} ( 1 - i^{n+1} ) $$
    $$= i - i^{n+2} $$
  • Question 8
    1 / -0
    If $$f\left( z \right) =\dfrac { 1-{ z }^{ 3 } }{ 1-z } $$, where $$z=x+iy$$ with $$z\neq 1$$, then $$Re\overline { \left\{ f\left( z \right)  \right\}  } =0$$ reduces to
    Solution
    $$f\left( z \right) =\dfrac { 1-{ z }^{ 3 } }{ 1-z } =\dfrac { \left( 1-z \right) \left( 1+z+{ z }^{ 2 } \right)  }{ \left( 1-z \right)  } $$
             $$=1+z+{ z }^{ 2 }$$
    Put $$z=x+iy$$, we get
    $$f\left( z \right) =1+x+iy+{ \left( x+iy \right)  }^{ 2 }$$
        $$=1+x+iy+{ x }^{ 2 }+2xyi+{ i }^{ 2 }{ y }^{ 2 }$$
        $$=\left( 1+x+{ x }^{ 2 }-{ y }^{ 2 } \right) +i\left( y+2xy \right) $$
    $$\Rightarrow f\left( \overline { z }  \right) =\left( 1+x+{ x }^{ 2 }-{ y }^{ 2 } \right) -i\left( y+2xy \right) $$
    Now, $$Re\left\{ \overline { f\left( z \right)  }  \right\} =0$$
    $$\Rightarrow 1+x+{ x }^{ 2 }-{ y }^{ 2 }=0$$
    $$\Rightarrow { x }^{ 2 }-{ y }^{ 2 }+x+1=0$$
  • Question 9
    1 / -0
    If $$z_{1}$$ and $$z_{2}$$ be complex numbers such that $$z_{1} + i(\overline {z_{2}}) = 0$$ and $$arg (\overline {z_{1}}z_{2}) = \dfrac {\pi}{3}$$. Then, $$arg (\overline {z_{1}})$$ is equal to
    Solution
    Given, $$z_{1} + i \,\overline {(z_{2})} = 0$$
    $$\Rightarrow z_{1} = (-i) \overline {z_{2}}$$
    Taking argument on both sides, we get
    $$arg (z_{1}) = arg \left \{(-i) \cdot \overline {z_{2}}\right \}$$
    $$\Rightarrow  arg (z_{1}) = arg (-i) + arg (\overline {z_{2}})$$ (by property)
    $$\Rightarrow arg(z_{1}) - arg (\overline {z_{2}}) = \tan^{-1} \left (\dfrac {-1}{0}\right ) = -\dfrac {\pi}{2}$$
    $$\Rightarrow arg (z_{1}) + arg (z_{2}) = \dfrac {-\pi}{2} ..... (i)$$
    $$[\because arg (\overline {z}) = -arg (z)]$$
    and $$arg (\overline {z_{1}}z_{2}) = \dfrac {\pi}{3}$$
    $$\Rightarrow arg (\overline {z_{1}}) + arg (z_{2}) = \dfrac {\pi}{3}$$
    $$\Rightarrow -arg (z_{1}) + arg (z_{2}) = \dfrac {\pi}{3}... (ii)$$
    On adding Eqs. (i) and (ii), we get
    $$2 arg (z_{2}) = \dfrac {-\pi}{6}$$
    $$\Rightarrow arg (z_{2}) = \dfrac {-\pi}{12}$$
    Therefore, from Eq. (i),
    $$arg (z_{1}) = \dfrac {-\pi}{2} + \dfrac {\pi}{12} = \dfrac {-5\pi}{12}$$
    $$\Rightarrow -arg (z_{1}) = \dfrac {5\pi}{12}$$
    $$\Rightarrow arg (z_{1}) = \dfrac {5\pi}{12}$$.
  • Question 10
    1 / -0
    If $$\left( \dfrac{1 + i}{1 - i} \right)^m = 1$$, then the least positive integral value of m is
    Solution
    Consider $$(\dfrac{1+i}{1-i})$$

    Rationalize the denominator we get,

    $$\Rightarrow (\dfrac{1+i}{1-i})=\dfrac{(1+i)(1+i)}{(1-i)(1+1)}=\dfrac{(1+i)^2}{(1-i)(1+i)}$$

    Here we see that denominator is in the form of $$(a+b)(a-b)=a^2-b^2$$

    $$\Rightarrow \dfrac{1+i}{1-i}=\dfrac{(1+i)^2}{1^2-i^2}$$

    $$\Rightarrow \dfrac{1+i}{1-i}=\dfrac{(1+i)^2}{1-i^2}$$

    we know that $$(a+b)^2=a^2+2ab+b^2$$

    $$\Rightarrow \dfrac{1+i}{1-i}=\dfrac{1^2+(2\times 1\times i)+i^2}{1-i^2}$$

    $$\Rightarrow \dfrac{1+i}{1-i}=\dfrac{1^2+2i+i^2}{1-i^2}$$

    We know that $$i^2=-1$$ , substituting this we get,

    $$\Rightarrow \dfrac{1+i}{1-i}=\dfrac{1+2i+(-1)}{1-(-1)}$$

    $$\Rightarrow \dfrac{1+i}{1-i}=\dfrac{1+2i-1}{1+1}$$

    $$\Rightarrow \dfrac{1+i}{1-i}=\dfrac{2i}{2}$$

    $$\Rightarrow \dfrac{1+i}{1-i}=i$$

    Given that $$\Rightarrow (\dfrac{1+i}{1-i})^m=1$$

    $$\Rightarrow (\dfrac{1+i}{1-i})^m=i^m$$

    So, $$i^m=1$$

    We know that $$i^2=-1$$

    Squaring on both sides we get,

    $$i^4=(-1)^2$$

    $$i^4=1$$

    Therefore the smallest value of $$m$$ for which $$ (\dfrac{1+i}{1-i})^m=1$$ is $$m=4$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now