Self Studies

Number Theory Test 30

Result Self Studies

Number Theory Test 30
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let Z and w be complex numbers. If $$Re(z)=|z-2|, Re(w) = |w-z|$$ and $$arg(z-w)=\dfrac{\pi}{3}$$, then the value of $$Im(z+w)$$, is
    Solution
    $$Re\left( z \right) =\left| z-2 \right| $$
    $$Re\left( w \right) =\left| w-z \right| $$
    $$arg\left( z-w \right) =\cfrac { \pi }{ 3 } $$
    Now,
    $$Re\left( z+w \right) =\left| \left| z-2 \right| +\left| w-z \right|  \right| $$
    $$=\left| w-2 \right| =2$$
    $$arg\left( z-w \right) =\cfrac { y }{ x } $$
    $$\tan { \cfrac { \pi  }{ 3 }  } =\cfrac { Im\left( z+w \right)  }{ Re\left( z+w \right)  } $$
    $$\Rightarrow Im\left( z+w \right) =\cfrac { 2 }{ \sqrt { 3 }  } $$
    Hence (B) is the correct answer
  • Question 2
    1 / -0
    If $$ z = \dfrac {-1}{2} + i \dfrac {\sqrt3}{2} $$, then $$ 8 + 10z + 7z^2 $$ is equal to :
    Solution
    Given, $$ z = - \dfrac {1} + i \dfrac {\sqrt3}{2} $$
    Therefore, $$z^2 = \dfrac {1}{4} - \dfrac {3}{4} - 2i \times \dfrac {1}{2} \dfrac {\sqrt3}{2} = - \dfrac {1}{2} - i \dfrac {\sqrt3}{2} $$
    $$ \Rightarrow  8 + 10z + 7z^2 = 8 + 10 \left(  - \dfrac {1}{2} + i \dfrac { \sqrt3}{2} \right) + 7 \left( - \dfrac {1}{2} + \dfrac { 3 \sqrt3}{2}i \right) $$
    $$ = 8 - 5 + i 5 \sqrt3 - \dfrac {7}{2} - i \dfrac {7 \sqrt3}{2}$$
    $$ = - \dfrac {1}{2} + \dfrac { 3 \sqrt3}{2} i$$
  • Question 3
    1 / -0
    If the complex numbers $$z_1, z_2$$ and $$z_3$$ denote the vertices of an isosceles triangle, right angled at $$z_1$$, then $$(z_1 - z_2)^2 + (z_1 - z_3)^2$$ is equal to
    Solution
    Since, the triangleis isosceles and right angled, we can say that 
    $$(z_3-z_1) = (z_2-z_1) (\cos 90^o + i \sin 90^o)$$
    $$\Rightarrow  (z_3-z_1) = i(z_2-z_1)$$
    Squaring bothe sides, we get
    $$(z_3-z_1)^2 = -(z_2-z_1)^2$$
    $$\Rightarrow  (z_3-z_1)^2 + (z_2-z_1)^2 = 0$$
  • Question 4
    1 / -0
    If $$z$$ is a complex number such that $$z + |z| = 8 + 12i$$, then the value of $$|z^{2}|$$ is
    Solution
    Let $$z = x + iy$$
    Then, we have $$z + |z| = 8 + 12i$$
    $$\Rightarrow(x + iy) + |x + iy| = 8 + 12l$$
    $$\Rightarrow (x + \sqrt {x^{2} + y^{2}}) + iy = 8 + 12i$$
    On comparing the real and imaginary part, we get
    $$y = 12$$
    and $$x + \sqrt {x^{2} + y^{2}} = 8$$
    $$\Rightarrow \sqrt {x^{2} + 144} = 8 - x$$
    On squaring both sides, we get
    $$x^{2} + 144 = 64 + x^{2} - 16x$$
    $$\Rightarrow 16x = -80$$
    $$\Rightarrow x = -5$$
    $$\therefore z = x + iy = -5 + i\cdot 12$$
    Then, $$|z| = \sqrt {25 + 144} = \sqrt {169} = 13$$
    $$\Rightarrow |z|^{2} = 169$$
    $$\Rightarrow |z^{2}| = 169 (\because |z^{n}| = |z|^{n})$$.
  • Question 5
    1 / -0
    If $$iz^{3} + z^{2} - z + i = 0$$, then $$|z|$$ is equal to
    Solution
    Given : $$iz^{3} + z^{2} - z + i = 0$$
    Dividing both sides by $$i$$ and using $$\dfrac {1}{i} = -i$$.
    We have,
    $$z^{3} - iz^{2} + iz + 1 = 0$$
    $$\Rightarrow z^{2}(z - i) + i(z - i) = 0$$ ...... $$(\because i^{2} = -1)$$
    $$\Rightarrow (z - i)(z^{2} + i) = 0$$
    $$\therefore z = i$$ or $$z^{2} = -i$$
    $$\therefore |z| = |i| = 1$$
    and $$|z|^{2}=|z^{2}| = |-i| = 1$$
    $$\therefore |z| =1$$.
  • Question 6
    1 / -0
    The principal argument of the complex number $$z=\cfrac { 1+\sin { \cfrac { \pi  }{ 3 }  } +i\cos { \cfrac { \pi  }{ 3 }  }  }{ 1+\sin { \cfrac { \pi  }{ 3 }  } -i\cos { \cfrac { \pi  }{ 3 }  }  } $$ is?
    Solution
    $$arg(z)=arg(Numerator)-arg(Denominator)$$
    $$=\tan ^{ -1 }{ \left| \cfrac { \cos { \cfrac { \pi  }{ 3 }  }  }{ 1+\sin { \cfrac { \pi  }{ 3 }  }  }  \right|  } +\tan ^{ -1 }{ \left| \cfrac { \cos { \cfrac { \pi  }{ 3 }  }  }{ 1+\sin { \cfrac { \pi  }{ 3 }  }  }  \right|  } $$
    $$=2\tan ^{ -1 }{ \left| \cfrac { \cos { \cfrac { \pi  }{ 3 }  }  }{ 1+\sin { \cfrac { \pi  }{ 3 }  }  }  \right|  } $$
    $$=2\tan ^{ -1 }{ (2-\sqrt { 3 }  } )=2\times {15}^{o}=\cfrac { \pi  }{ 6 } $$
  • Question 7
    1 / -0
    If '$$\omega$$' is a complex cube root of unity,then $$\omega ^{ \begin{pmatrix} \frac { 1 }{ 3 }  & +\frac { 2 }{ 9 } +\frac { 4 }{ 27 } ...\infty  \end{pmatrix} }+\omega^{ \begin{pmatrix} \frac { 1 }{ 2 }  & +\frac { 3 }{ 8 } +\frac { 9 }{ 32 } ...\infty  \end{pmatrix} }=$$
    Solution
    $$\dfrac{1}{3}+\dfrac{2}{9}+\dfrac{4}{27}+......+\infty$$  (infinte G.P.)

    $$S_\omega = \dfrac{a}{1-r} =1$$

    $$\dfrac{1}{2}+\dfrac{3}{8}+\dfrac{9}{32}+......+\infty$$  (infinte G.P.)

    $$S_\omega = \dfrac{a}{1-r} =2$$

    $$\therefore\, \omega^1+\omega^2=-1$$
  • Question 8
    1 / -0
    The inequality $$\left| z-4 \right| <\left| z-2 \right| $$ represents the region given by:
    Solution
    We know that, $$\left| z-{ z }_{ 1 } \right| >\left| z-{ z }_{ 2 } \right| $$ represents the region on right side of perpendicular bisector of $${z}^{1}$$ and $${z}^{2}$$.
    Thus, the given inequality $$\left| z-2 \right| >\left| z-4 \right| $$ represents the region on the right side of perpendicular bisector of $$2$$ and $$4$$.
    $$\Rightarrow Re(z)>3$$ and $$\text{Im}(z)\in R$$
  • Question 9
    1 / -0
    Let$$ z$$ = $$\cos\theta + i \sin\theta$$. Then the value of $$\sum\limits_{m=1}^15Im( z^{2m-1})$$ at $$\theta = 2^0$$ is 
    Solution
    using the sum of series of sine
    $$\sum_{m=1}^{n}sin(a+k.d)=\dfrac{sin\dfrac{n\times d}{2}}{sin\dfrac{d}{2}}\times sin(\dfrac{2a+(n-1).d}{2})$$
    Given,
    $$\sum_{m=1}^{15}Im(z^{2m-1})\rightarrow$$

    $$sin\theta+sin3\theta+sin5\theta+.......sin29\theta=$$

    $$\rightarrow\dfrac{sin\dfrac{15\times 2\theta}{2}}{sin\dfrac{2\theta}{2}}\times sin(\dfrac{2\theta+(14\times2\theta)}{2})$$

    $$\rightarrow\dfrac{sin^215\theta}{sin\theta}$$

    put $$\theta = 2^{\circ}$$

    $$\rightarrow\dfrac{sin^230^{\circ}}{sin2^{\circ}}$$

    $$\rightarrow\dfrac{1}{4.sin2^{\circ}}$$


  • Question 10
    1 / -0
    If $$z_1, z_2$$ are two complex numbers such that $$arg(z_1+z_2)=0$$ and $$Im(z_1z_2)=0$$, then.
    Solution
    Let $$ z_1=a+ib$$
    and $$z_2=c+id$$
    Now $$z_1+z_2=(a+c)+i(b+d)$$
    Given $$arg(z_1+z_2)=0$$
    $$\Rightarrow tan^{-1}[\dfrac{b+d}{a+c}]=0$$
    $$\Rightarrow b+d=0$$.........$$(1)$$
    Now,
     $$z_1z_2=(ac-bd)+i(ad+bc)$$
    Given $$Im(z_1z_2)=0$$
    $$\Rightarrow ad+bc=0$$.........$$(2)$$
    Putting $$b=-d$$ from $$(1)$$ in $$(2)$$ we get $$a=c$$
    Hence $$z_1=a+ib=c-id= $$conjugate of $$z_2=z_2^{\rightarrow}$$
    Hence option C is correct.


Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now