Self Studies

Number Theory T...

TIME LEFT -
  • Question 1
    1 / -0

    ............are the Pentium binary program that can be embedded in a web page. 

  • Question 2
    1 / -0

    Which of the following is a prime number?

  • Question 3
    1 / -0

    If z satisfies $$\left| {z - 1} \right| < \left| {z + 3} \right|$$ then $$w = 2z + 3 - i$$ , ( where $$w = 2z + 3 - i$$ ) satisfies:

  • Question 4
    1 / -0

    If $$z_1 \, z_2$$ be two distinct complex numbers and let z = (1 - t) $$z_1$$ + t$$z_2$$ for some real number t with 0 < t < 1. If arg $$(\omega)$$ denotes the principal argument of a non-zero complex number $$(\omega)$$, then

  • Question 5
    1 / -0

    Simplify $$\left ( \dfrac{2i}{1 \, + \, i} \right )^2$$

  • Question 6
    1 / -0

    Let $$z$$ be a complex number such that $$\left| z+\dfrac { 1 }{ z }  \right| =2$$. 

    If $$\left| z \right| ={ r }_{ 1 }$$ and $$\left| \dfrac { 1 }{ z }  \right| =$$ $${r}_{2}$$ for $$\arg z=\dfrac { \pi  }{ 4 }$$ then 

    $$\left| { r }_{ 1 }-{ r }_{ 2 } \right| =$$

  • Question 7
    1 / -0

    Real part of  $$\dfrac{(1 + i)^2}{3 - i} =$$

  • Question 8
    1 / -0

    If $$\dfrac{2z_1}{3z_2}$$ is a purely imaginary number,then $$\left|\dfrac{z_1-z_2}{z_1+z_2}\right|=$$

  • Question 9
    1 / -0

    Find the real number $$x$$ if $$(x-2i)(1+i)$$ is purely imaginary.

  • Question 10
    1 / -0

    The value of $$\dfrac{1}{i} + \dfrac{1}{{{i^2}}} + \dfrac{1}{{{i^3}}} + ... + \dfrac{1}{{i^{102}}}$$ is equal to 

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now