Self Studies

Number Theory Test 35

Result Self Studies

Number Theory Test 35
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$i^2= -1$$, then $$1+ i^2+ i^4 +i^6+i^8 +.............to ( 2n +1)$$ terms is equal to
    Solution
    $$ 1+ i^2 + i^4 + ......(2n+1)terms$$
    First term $$ a = i^2$$
    Common ratio $$ r = i^2$$
    $$ 1  + \cfrac{a(r^n-1)}{r-1}$$
    $$ = 1  - \cfrac{i^2(i^{2(2n)} - 1)}{i-1}$$
    $$ = 1 - \cfrac{i^2(i^4-1)}{i-1}$$  Since $$ i^4 = 1$$
    $$ =1$$ 
  • Question 2
    1 / -0
    $$i \, \log \left(\dfrac{x - i}{x + i}\right)$$ is equal to
    Solution
    $$i\log \left ( \cfrac{x-i}{x+i} \right )$$

    $$=i\log \left ( \cfrac{x-i}{x+i}\times  \cfrac{x-i}{x-i}\right )$$

    $$=i\log \left ( \cfrac{(x-i)^{2}}{x^{2}-i^{2}} \right )$$

    $$=i\log \left ( \cfrac{(x-i)^{2}}{x^{2}+1} \right )$$

    $$=i\log (x-i)^{2}-i\log \left ( x^{2}+1 \right )$$

    $$=2i\log (x-i)-i\log \left ( x^{2}+1 \right )$$
  • Question 3
    1 / -0
    If $$z = -3- i,$$ find $$|z|$$.
    Solution
    $$Re(z)=-3\\Im(z)=-1\\ \bar{z}=-3+i\\|z|=3^2+1^2=10$$

  • Question 4
    1 / -0
    If $$a+ ib= \sum_{k=1}^{101} i^k $$, then $$(a, b)$$ equals 
    Solution
    Given:- 
    $$a + ib = \Sigma^{101}_{k = 1}{{i}^{k}} \longrightarrow \left( 1 \right)$$

    Solution:-

    $$\Sigma^{101}_{k = 1}{{i}^{k}} = i + {i}^{2} + {i}^{3} + ............... + {i}^{101}$$

    As te above series is in the form of G.P. with common ration $$(r)=i$$, first term $$\left( a \right) = i$$ and no. of terms $$\left( n \right) = 101$$

    $$\therefore \; {S}_{101} = \cfrac{ i \left( 1 - {i}^{101} \right)}{\left( 1 - i \right)} \; \left\{ \because {S}_{n} = \cfrac{a \left( 1 - {r}^{n} \right)}{\left( 1 - r \right)}\; \text{ for } r < 1 \right\}$$

    $$\Rightarrow \; {S}_{n} = \cfrac{i \left( 1 - {i}^{4 \times 25}.i \right)}{\left( 1 - i \right)}$$

    $$\Rightarrow \; {S}_{n} = \cfrac{ i \left( 1 - i \right)}{\left( 1 - i \right)} \; \left\{ \because {i}^{4n} = 1 \right\}$$

    $$\Rightarrow \; {S}_{n} = i$$

    $$\therefore \; \Sigma^{101}_{k = 1}{{i}^{k}} = i \longrightarrow \left( 2 \right)$$

    Now, from $${eq}^{n} \left( 1 \right) \& \left( 2 \right)$$, we have,

    $$a + ib = i$$

    $$\Rightarrow \; a + ib = 0 + i.1$$

    On comparing real and imaginary parts, we have

    $$a = 0 \; \& \; b = 1$$

    Hence, $$\left( a, b \right) = \left( 0, 1 \right)$$.
  • Question 5
    1 / -0
    If $$\left| {z - \dfrac{4}{z}} \right| = 2$$ , then the maximum value of$$\left| z \right|$$ is
    Solution


  • Question 6
    1 / -0
    $$\dfrac{{{{\left( {1 + i} \right)}^3}}}{{2 + i}}$$  is equal to
    Solution
    $$\Rightarrow \cfrac { { \left( 1+i \right)  }^{ 3 } }{ 2+i } =\cfrac { { \left( 1+i \right)  }^{ 2 }\left( 1+i \right)  }{ 2+i } =\cfrac { \left( 1+{ i }^{ 2 }+2i \right) \left( 1+i \right)  }{ \left( 2+i \right)  } =\cfrac { 2i\left( 1+i \right)  }{ 2+i } $$
    $$\Rightarrow \cfrac { 2\left( i-1 \right) \left( 2-i \right)  }{ \left( 2+i \right) \left( 2-i \right)  } =\cfrac { 2\left( 2i-{ i }^{ 2 }-2+i \right)  }{ 4-{ i }^{ 2 } } =\cfrac { -2 }{ 5 } +\cfrac { 6 }{ 5 } i$$
  • Question 7
    1 / -0
    The modulus of the complex number $$z=\dfrac{1-i}{3-4i}$$ is
    Solution
    Now,
    $$z=\dfrac{1-i}{3-4i}$$
    or, $$z=\dfrac{(1-i)(3+4i)}{3^2+4^2}$$
    or, $$z=\dfrac{7+i}{25}$$.
    Then $$|z|=\sqrt{\left(\dfrac{7}{25}\right)^2+\left(\dfrac{1}{25}\right)^2}=\dfrac{\sqrt{50}}{25}=\dfrac{\sqrt{2}}{5}$$.
  • Question 8
    1 / -0
    The real part of $$(1 - \cos\theta + 2i \sin\theta)^{-1}$$ is:
    Solution
    $$\Rightarrow \cfrac { 1 }{ \left( 1-\cos { \theta  }  \right) +2i\sin { \theta  }  } =\cfrac { \left( 1-\cos { \theta  }  \right) -2i\sin { \theta  }  }{ { \left( 1-\cos { \theta  }  \right)  }^{ 2 }-4{ i }^{ 2 }\sin ^{ 2 }{ \theta  }  } $$
    $$=\cfrac { \left( 1-\cos { \theta  }  \right) -2i\sin { \theta  }  }{ { \left( 1-\cos { \theta  }  \right)  }^{ 2 }+4{ i }^{ 2 }\sin ^{ 2 }{ \theta  }  }$$
  • Question 9
    1 / -0
    Which of the following pair of numbers are $$\text{relatively prime}$$ :-
    Solution
    The question must be which of the following are relatively primes?
    $$(a)$$HCF$$\left(36,54\right)$$
    Factors of $$36=2\times 3\times 2\times 3$$
    Factors of $$54=2\times 3\times 3\times 3$$
    Common factor$$=2\times 3\times 3=18$$
    Hence HCF$$=18$$
    $$\therefore\,36$$ and $$54$$ are not relatively primes
    $$(b)$$HCF$$\left(52,78\right)$$
    Factors of $$52=2\times 2\times 13$$
    Factors of $$78=2\times 3\times 13$$
    Common factor$$=2\times 13=26$$
    Hence HCF$$=26$$
    $$\therefore\,52$$ and $$78$$ are not relatively primes
    $$(c)$$HCF$$\left(54,114\right)$$
    Factors of $$54=2\times 3\times 3\times 3$$
    Factors of $$114=2\times 3\times 19$$
    Common factor$$=2\times 3=6$$
    Hence HCF$$=6$$
    $$\therefore\,54$$ and $$114$$ are not relatively primes
    $$(d)$$HCF$$\left(59,61\right)$$
    Factors of $$59=1\times 59$$
    Factors of $$61=1\times 61$$
    Common factor$$=1$$
    Hence HCF$$=1$$
    $$\therefore\,59$$ and $$61$$ are relatively primes
    As $$61-59=2$$ they are also twin primes.
  • Question 10
    1 / -0
    If $$z=\dfrac{1+i}{\sqrt{2}}$$, then the value of $$z^{1929}$$ is
    Solution
    Let $$z=\dfrac{1+i}{\sqrt{2}}$$

    $$\Rightarrow |z|=\sqrt{\dfrac{1}{2}+\dfrac{1}{2}}=1$$

    $$\Rightarrow Arg=tan^{-1}(1)=\dfrac{\pi}{4}$$

    $$\therefore z^{1929}=(1\cdot e^{\dfrac{\pi i}{4}})^{1929}$$

                 $$=e^{1929 \times \dfrac{\pi i}{4}}$$

                 $$=e^{i\left(482\pi+\dfrac{\pi}{4}\right)}$$

                 $$=e^{i\dfrac{\pi}{4}}$$

                 $$=\dfrac{1}{\sqrt{2}}+i\dfrac{1}{\sqrt{2}}$$

    $$\therefore z^{1929}=\dfrac{1+i}{\sqrt{2}}$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now