Given:-
$$a + ib = \Sigma^{101}_{k = 1}{{i}^{k}} \longrightarrow \left( 1 \right)$$
Solution:-
$$\Sigma^{101}_{k = 1}{{i}^{k}} = i + {i}^{2} + {i}^{3} + ............... + {i}^{101}$$
As te above series is in the form of G.P. with common ration $$(r)=i$$, first term $$\left( a \right) = i$$ and no. of terms $$\left( n \right) = 101$$
$$\therefore \; {S}_{101} = \cfrac{ i \left( 1 - {i}^{101} \right)}{\left( 1 - i \right)} \; \left\{ \because {S}_{n} = \cfrac{a \left( 1 - {r}^{n} \right)}{\left( 1 - r \right)}\; \text{ for } r < 1 \right\}$$
$$\Rightarrow \; {S}_{n} = \cfrac{i \left( 1 - {i}^{4 \times 25}.i \right)}{\left( 1 - i \right)}$$
$$\Rightarrow \; {S}_{n} = \cfrac{ i \left( 1 - i \right)}{\left( 1 - i \right)} \; \left\{ \because {i}^{4n} = 1 \right\}$$
$$\Rightarrow \; {S}_{n} = i$$
$$\therefore \; \Sigma^{101}_{k = 1}{{i}^{k}} = i \longrightarrow \left( 2 \right)$$
Now, from $${eq}^{n} \left( 1 \right) \& \left( 2 \right)$$, we have,
$$a + ib = i$$
$$\Rightarrow \; a + ib = 0 + i.1$$
On comparing real and imaginary parts, we have
$$a = 0 \; \& \; b = 1$$
Hence, $$\left( a, b \right) = \left( 0, 1 \right)$$.