Self Studies

Number Theory Test 39

Result Self Studies

Number Theory Test 39
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Choose the composite numbers from the following numbers $$87, 67, 45, 34, 23, 27, 33$$.
    Solution
    $$87, 45, 34, 33, 27$$ are composite numbers
    [A composite number define as except own and one which are divisible by any numbers such that  (4,6,8,9,....)]
  • Question 2
    1 / -0
    If $$z$$ is a complex number, then $$z^{2}+\bar{z}^{2}=2$$ represents-
    Solution
    Let $$z=x+iy$$
          $$\bar {z} =x-iy$$
    $$\therefore z^{2}+{\bar {z}}^{2}={ \left( x+iy \right)  }^{ 2 }+{ \left( x-iy \right)  }^{ 2 }$$ 
    $$=x^2+2xyi-y^2+x^2-2xyi-y^2=2$$
    $$\therefore 2\left( { x }^{ 2 }-{ y }^{ 2 } \right) =2$$
    $$\therefore \boxed {x^2-y^2=1}$$
    Equation of hyperbola.
  • Question 3
    1 / -0
    The modulus of the complex number $$z=\frac { \left( 1-i\sqrt { 3 }  \right) \left( \cos { \theta  } +isin\theta  \right)  }{ 2\left( 1-i \right) \left( \cos { \theta  } -isin\theta  \right)  } $$  is-
    Solution

  • Question 4
    1 / -0
    If $$x^{2}+y^{2}=1$$ and $$x \neq -1$$ then $$\dfrac {1+y+ix}{1+y-ix}$$
    Solution

  • Question 5
    1 / -0
    If $$\left|z\right|=1$$ and $$\varpi=\dfrac{z-1}{z+1}$$, where $$z\neq-1$$, then $$Re\left(\varpi\right)$$ is
    Solution

  • Question 6
    1 / -0
    What is the modulus of following complex number:$$-2+2\sqrt { 3i } $$

    Solution

  • Question 7
    1 / -0
    If $$z=(3+7i)(p+iq)$$ where $$p,q\in I-\left\{ 0 \right\} $$, is purely imaginary then minimum value of $${ \left| z \right|  }^{ 2 }$$ is
    Solution

  • Question 8
    1 / -0
    If $$z=(3+7i)(p+iq)$$, where $$p,q\in I-\left\{ 0 \right\} $$, is a purely imaginary, then minimum value of $${ \left| z \right|  }^{ 2 }$$ is
    Solution
    $$z=(3+7i)(p+iq) \quad \dots (1)$$

    $$z=(3p-7q)+i(3q+7p)$$

    Now, $$z$$ is purely imaginary

    $$3p-7q=0$$

    or $$\cfrac{p}{q}=\cfrac{7}{3}$$

    $$\cfrac{p}{q}+i=\cfrac{7}{3}+i$$

    Therefore, $$\cfrac{(p+qi)}{q}=\cfrac{7+3i}{3}$$

    $$p+iq=7+3i \quad \dots (2)$$

    Substitute $$(2)$$ in  $$(1)$$

    $$z=21+9i+49i-21$$

    Thus, $$z=58i$$

    $$\left| { z }^{ 2 } \right| =3364$$
  • Question 9
    1 / -0
    $$z=a+ib$$, $$a,b,\in R$$, $$b\ne 0$$ and $$\left| z \right| =1$$, then $$z=\cfrac{c+i}{c-i}$$, where $$c$$ is equal to
    Solution

  • Question 10
    1 / -0
    If $$z=\dfrac{\sqrt{3}}{2}+\dfrac{1}{2}i$$ then $$z\bar{z}$$ is
    Solution
    Conjugate of $$\dfrac{\sqrt{3}+i}{2}=\dfrac{\sqrt{3}-i}{2}$$
    $$\therefore\,\bar{z}=\dfrac{\sqrt{3}-i}{2}$$
    Now,$$z\bar{z}=\left(\dfrac{\sqrt{3}+i}{2}\right)\left(\dfrac{\sqrt{3}-i}{2}\right)=\dfrac{3-{i}^{2}}{4}=\dfrac{3+1}{4}=\dfrac{4}{4}=1$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now