Self Studies

Number Theory Test 40

Result Self Studies

Number Theory Test 40
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\left| {z + 2 - i} \right| = 5$$ then the maximum value of $$\left| {3z + 9 - 7i} \right|$$ is 
    Solution

  • Question 2
    1 / -0
    Let $$A = \left\{ {z \in c:\left| z \right|} \right. = 2\left. 5 \right\}$$ and $$B = \left\{ {z \in c:\left| {z + 5 + 12i} \right|} \right. = 4$$. Then the minimum value of $$\left| {z - w} \right|$$ for $$Z \in A$$ and $$\omega  \in B$$ is :
    Solution

  • Question 3
    1 / -0
    Solve $$i^{57}+\dfrac{1}{i^{125}}$$
    Solution
    We know that $${i}^{2}=-1$$
    $${i}^{3}={i}^{2}.i=-i$$
    $${i}^{4}={i}^{2}\times {i}^{2}=-1\times -1=1$$
    Thus, $${i}^{57}={\left({i}^{4}\right)}^{14}\times i={1}^{14}\times i=i$$
    $${i}^{125}={\left({i}^{4}\right)}^{31}\times i={1}^{4}\times i=i$$
    $$\dfrac{1}{{i}^{125}}=\dfrac{1}{i}$$
    $$\dfrac{1}{i}=\dfrac{1}{i}\times\dfrac{i}{i}=\dfrac{i}{{i}^{2}}=-i$$
    Now $${i}^{57}+\dfrac{1}{{i}^{125}}=i+\left(-i\right)=i-i=0$$
  • Question 4
    1 / -0
    If $${z_1}$$ and $${z_2}$$ be complex numbers such that $${z_1} \ne {z_2}$$ and $$\left| {{z_1}} \right| = \left| {{z_2}} \right|$$. If $${z_1}$$ has positive real part and $${z_2}$$ has negative imarinary part, then $$\frac{{\left( {{z_1} + {z_2}} \right)}}{{\left( {{z_1} - {z_2}} \right)}}$$ may be
    Solution

  • Question 5
    1 / -0
    If $$|z_{1}+z_{2}|=|z_{1}-z_{2}|$$, then the different in the amplitudes of $$z_{1}$$ and $$z_{2}$$ is
    Solution
    $$|z_{1}+ z_{2}|= |z_{1}- z_{2}|$$ then we can say that the long of diagonals of the parallelogram is equal hence the parallelogram is a rectangle so angle between $$z_{1}$$ & $$z_{2}$$ is $$90$$ degree
  • Question 6
    1 / -0
    The value of $$2x^{4}+5x^{3}+7x^{2}-x+41$$, when $$x=-2-\sqrt{3i}$$ is:
    Solution
    $$ 2x^{4}+5x^{3}+4x^{2}-x+41 $$ ---(1)
    when $$ x = -2-\sqrt{3}i = -(2+\sqrt{3}i) $$---(2)
    $$ x^{2} = (2+\sqrt{3}i)^{2} $$
    $$ = 4+3(i)^{2}+4\sqrt{3}i $$ 
    $$ =4-3+4\sqrt{3}! $$  $$ (\because i^{2} = -1) $$
    $$ x^{2} = 1+4\sqrt{3}i $$ ---(3)
    $$ x^{3} = x^{2}.x $$
    $$ = (1+4\sqrt{3}i)[-(2+\sqrt{3}i)] $$
    $$ = -(2+\sqrt{3}i+8\sqrt{3}i+12!^{2}) $$
    $$ = -(2-12+9\sqrt{3}i) $$
    $$ x^{3} = 10-9\sqrt{3}i $$ ---(4)
    $$ x^{4} = (x^{2})^{2} $$ 
    $$ = (1+4\sqrt{3}i)^{2} $$
    $$ = 1+48!^{2}+8i\sqrt{3} $$
    $$ = 1-48+8i\sqrt{3} $$ $$ (i^{2} = -1) $$
    $$ x^{4} = -47+8!^{3} $$---(5) 
    From (1),(2),(3),(4) and (5) 
    $$ 2(-47+8i\sqrt{3})+5(10-9\sqrt{3}i)+7(1+4\sqrt{3}i)-(-2\sqrt{3}i)+41$$ $$ -94+16i\sqrt{3}+50-45\sqrt{3}i+7+28\sqrt{3}i+2+\sqrt{3}i+41 $$ 
    $$ = 6 $$  d)

  • Question 7
    1 / -0
    If the six solutions of $$x^6 = -64$$ are written in the form $$a + bi$$, where $$a$$ and $$b$$ are real, then the product those solution with $$a < 0$$, is
  • Question 8
    1 / -0
    The value of the sum $$\displaystyle\sum^{13}_{n=1}\left(i^n+i^{n+1}\right)$$, where $$i=\sqrt{-1}$$, is?
    Solution
    $$ = \displaystyle\sum_{n=1}^{13}(i^{n}+i^{n+1}) $$
    $$ =\displaystyle \sum_{n=1}^{13}(l^{n}.(i+1)) $$
    $$ = (i+1)\displaystyle\sum_{n=1}^{13}(i^{n}) $$
    $$ = (i+1)[i+i^{2}+i^{3}+i^{4}+i^{5}+i^{6}+i^{7}+i^{8}+i^{9}+$$
    $$i^{10}+i^{11}+i^{12}+i^{13}] $$
    $$ = (i+1)[i+(-1)+(-i)+1+i+(-1)+(-i)+1+1$$
    $$+(-1)+(-i)+1+i] $$
    $$ = (i+1)(i) $$
    $$ =l^{2}+i $$
    $$ = -1+i $$
    $$ = i-1 $$ 
  • Question 9
    1 / -0
    If $$z_{1} and z_{2} are on straight line$$ $$\left| \frac { 1 } { 2 } \left( z _ { 1 } + z _ { 2 } \right) + \sqrt { z _ { 1 } z _ { 2 } } \right| + \left| \frac { 1 } { 2 } \left( z _ { 1 } + z _ { 2 } \right) - \sqrt { z _ { 1 } z _ { 2 } } \right| =$$
    Solution

  • Question 10
    1 / -0
    If $$z_{1}$$ and $$z_{2}$$ two non-zero complex number such that $$|z_{1}+z_{2}|=|z_{1}|+|z_{2}|$$, then $$arg z_{1}-arg z_{2}$$ is equal to
    Solution
    $$\left| z_1+z_2\right|=\left| z_1\right| +\left| z_2\right|$$
    $$\Rightarrow  z_1 \;\&\; z_2$$ are collinear and in same direction.
    $$\Rightarrow arg \left(z_1\right)-arg\left(z_2\right)=0.$$
    Hence, the answer is $$0.$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now