Self Studies

Number Theory Test 41

Result Self Studies

Number Theory Test 41
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If$${ z }_{ 1 }$$ and $${ z }_{ 2 }$$ are two complex number such that Im$$({ z }_{ 1 }={ z }_{ 2 })$$= 0= Im $$({ z }_{ 1 }{ z }_{ 2 })$$, then 
    Solution
    As per given condition:

    $$Img(z_1=z_2)=0=Im(z_1z_2)$$

    $$\Rightarrow Im(z_1z_2)=0$$

    Product of imaginary parts is zero, implies that the direction of each number is opposite in direction.

    $$\therefore z_1=\bar{z_2}$$
  • Question 2
    1 / -0
    $$z$$ is a complex number. If $$a = | x | + | y |$$ and
    $$b = \sqrt { 2 } | x + i y |$$ then which of the following is
    true

    Solution

  • Question 3
    1 / -0
    If $$z=(3+4i)^6+(3-4i)^6,$$ where $$i=\sqrt { -1 }, $$ then $$Im(z)$$ equals to 
    Solution
    $$z={ \left( 3+4i \right)  }^{ 6 }+{ \left( 3-4i \right)  }^{ 6 }$$
       $$={ \left[ 5\left( { e }^{ i\theta  } \right)  \right]  }^{ 6 }+{ \left[ 5\left( { e }^{ -i\theta  } \right)  \right]  }^{ 6 }$$            [where $$\theta ={ tan }^{ -1 }\left( 4/3 \right) $$]
       $$={ 5 }^{ 6 }\left[ { e }^{ i6\theta  }+{ e }^{ -i6\theta  } \right] $$
       $$={ 5 }^{ 6 }\left[ 2Re\left( { e }^{ i6\theta  } \right)  \right] $$
    $$\therefore$$    In $$\left( z \right) =0$$      [B]
  • Question 4
    1 / -0
    Number of complex numbers $$z$$ such that $$|z|=1$$ and $$\left|\dfrac {z}{z}+\dfrac {\bar {z}}{z}\right|=1$$ is
    Solution
    Since $$z$$ is equidistant from $$1,-1,i$$, we can say that $$z$$is center of circle with $$1,-1,i$$ lying on it's circumference and so there is one one circle possible passing through $$3$$ points. So, the answer is $$1$$.
  • Question 5
    1 / -0
    The modulus of $$\dfrac { \left( 3+2i \right) ^{ 2 } }{ \left( 4-3i \right)  } $$ is:
    Solution

  • Question 6
    1 / -0
    If a complex number z and $$z+\dfrac { 1 }{ z } $$ have same argument then- 
    Solution

    we have,

    z is a complex number.

    Then,

    Let $$z=r\cos \theta +i\sin \theta $$

    Now, we know that,

    $$\overline{z}=r\left( \cos \theta -i\sin \theta  \right)$$

    So,

    $$z\overline{z}={{r}^{2}}$$

    Then,

    $$\dfrac{1}{z}=\dfrac{\overline{z}}{z\overline{z}}=\dfrac{\overline{z}}{{{r}^{2}}}$$

    Now,

    According to given question,

    $$ z+\dfrac{1}{z}=\left| z+\dfrac{1}{z} \right|=1\,\,\,\left( \text{z}\,\text{and}\,\text{z+}\dfrac{\text{1}}{\text{z}}\,\text{same argument} \right) $$

    $$ =\left| r\left( \cos \theta +i\sin \theta  \right)+\dfrac{r\left( \cos \theta -i\sin \theta  \right)}{{{r}^{2}}} \right|=1 $$

    $$ =\left| \left( r+\dfrac{1}{r} \right)\cos \theta +i\left( r-\dfrac{1}{r} \right)\sin \theta  \right|=1 $$

    Now, squaring both side and we get,

    $$\left| \left( {{r}^{2}}+\dfrac{1}{{{r}^{2}}}+2 \right){{\cos }^{2}}\theta +{{i}^{2}}\left( {{r}^{2}}+\dfrac{1}{{{r}^{2}}}-2 \right){{\sin }^{2}}\theta  \right|=1$$

    So,

    $$ \left( {{r}^{2}}+\dfrac{1}{{{r}^{2}}}+2 \right){{\cos }^{2}}\theta =1 $$

    $$ {{r}^{2}}+\dfrac{1}{{{r}^{2}}}+2\cos 2\theta =1 $$

    $$ {{r}^{2}}+\dfrac{1}{{{r}^{2}}}=1-2\cos 2\theta  $$

    Now,

    $$ 1-2\cos 2\theta =0 $$

    $$ \Rightarrow \cos 2\theta =\dfrac{1}{2} $$

    $$ \Rightarrow \cos 2\theta =cos\dfrac{\pi }{3} $$

    $$ \Rightarrow 2\theta =\dfrac{\pi }{3} $$

    $$ \Rightarrow \theta =\dfrac{\pi }{6} $$

    Then, Z is purely imaginary. 

    Hence, this is the answer.

  • Question 7
    1 / -0
    A value of $$\theta $$ for which$$\dfrac { 2+3isin\theta  }{ 1-2isin\theta  } $$ is purely imaginary, is:
    Solution

    We have,

    $$\dfrac{2+3i\sin \theta }{1-2i\sin \theta }$$


    On rationalize and we get,

    $$ \dfrac{2+3i\sin \theta }{1-2i\sin \theta }\times \dfrac{1+2i\sin \theta }{1+2i\sin \theta } $$

    $$ \Rightarrow \dfrac{2+3i\sin \theta +4i\sin \theta +6{{i}^{2}}{{\sin }^{2}}\theta }{{{1}^{2}}-4{{i}^{2}}{{\sin }^{2}}\theta } $$

    $$ \Rightarrow \dfrac{2-{{\sin }^{2}}\theta +7i\sin \theta }{1+4{{\sin }^{2}}\theta } $$

    $$ \Rightarrow \dfrac{1+1-{{\sin }^{2}}\theta +7i\sin \theta }{1+4{{\sin }^{2}}\theta } $$

    $$ \Rightarrow \dfrac{1+{{\cos }^{2}}\theta +7i\sin \theta }{1+4{{\sin }^{2}}\theta } $$

    $$ \Rightarrow \dfrac{1+{{\cos }^{2}}\theta }{1+4{{\sin }^{2}}\theta }+\dfrac{7i\sin \theta }{1+4{{\sin }^{2}}\theta } $$

    $$ \Rightarrow \dfrac{1+{{\cos }^{2}}\theta }{1+4{{\sin }^{2}}\theta }+i\dfrac{7\sin \theta }{1+4{{\sin }^{2}}\theta } $$

    Now,

    Then purely imaginary is

    Real part of equal to zero.

    $$ \dfrac{1+{{\cos }^{2}}\theta }{1+4{{\sin }^{2}}\theta }=0 $$

    $$ \Rightarrow 1+{{\cos }^{2}}\theta =0 $$

    $$ \Rightarrow {{\cos }^{2}}\theta =-1 $$

    $$ \Rightarrow \cos \theta =\sqrt{-1} $$

    $$ \Rightarrow \theta ={{\cos }^{-1}}\sqrt{-1} $$

    Hence, this is the answer.

  • Question 8
    1 / -0
    If $$z$$ satisfies $$|z - 2+ 2i| \le 1$$
    Solution

  • Question 9
    1 / -0
    If $$\dfrac { z+1 }{ z+i }$$ is purely imaginary, then z lies on a 
    Solution
    $$\dfrac { z+1 }{ z+i } $$ is purely imaginary

    $$\Rightarrow Re\left( \dfrac { z+1 }{ z+i }  \right) =0$$

    Say $$z=x+iy$$

    then,

    $$Re\left( \dfrac { x+iy+1 }{ x+iy+i }  \right) =0$$

    $$\Rightarrow Re\left( \dfrac { \left( x+1 \right) +iy }{ x+i\left( y+1 \right)  }  \right) =0$$

    $$\Rightarrow Re\left[ \dfrac { \left[ \left( x+1 \right) +iy \right] \left[ x-i\left( y+1 \right)  \right]  }{ { x }^{ 2 }+{ \left( y+1 \right)  }^{ 2 } }  \right] =0$$

    $$\Rightarrow Re\left[ \dfrac { x\left( x+1 \right) +y\left( y+1 \right) +i\left( xy-\left( x+1 \right) \left( y+1 \right)  \right)  }{ { x }^{ 2 }+{ \left( y+1 \right)  }^{ 2 } }  \right] =0$$

    $$\therefore$$   $$\dfrac { x\left( x+1 \right) +y\left( y+1 \right)  }{ { x }^{ 2 }+{ \left( y+1 \right)  }^{ 2 } } =0$$

    $$\Rightarrow { x }^{ 2 }+x+{ y }^{ 2 }+y=0$$

    $$\Rightarrow { x }^{ 2 }+{ y }^{ 2 }+x+y=0$$

    $$\Rightarrow { x }^{ 2 }+{ y }^{ 2 }+2.\dfrac{1}{2}x+2.\dfrac{1}{2}y=0$$

    The above is a circle with centre $$\left( \dfrac { -1 }{ 2 } ,\dfrac { -1 }{ 2 }  \right) $$ and radius $$\sqrt { \dfrac { 1 }{ 4 } +\dfrac { 1 }{ 4 }  } =\sqrt { \dfrac { 1 }{ 2 }  } $$ units

    Option B.
  • Question 10
    1 / -0
    Purely imaginary then find the sum of statement i $$a,b$$ 
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now