we have,
z is a complex number.
Then,
Let $$z=r\cos \theta +i\sin \theta $$
Now, we know that,
$$\overline{z}=r\left( \cos \theta -i\sin \theta \right)$$
So,
$$z\overline{z}={{r}^{2}}$$
Then,
$$\dfrac{1}{z}=\dfrac{\overline{z}}{z\overline{z}}=\dfrac{\overline{z}}{{{r}^{2}}}$$
Now,
According to given question,
$$ z+\dfrac{1}{z}=\left| z+\dfrac{1}{z}
\right|=1\,\,\,\left( \text{z}\,\text{and}\,\text{z+}\dfrac{\text{1}}{\text{z}}\,\text{same
argument} \right) $$
$$ =\left| r\left( \cos \theta +i\sin \theta \right)+\dfrac{r\left( \cos \theta -i\sin
\theta \right)}{{{r}^{2}}} \right|=1 $$
$$ =\left| \left( r+\dfrac{1}{r} \right)\cos \theta +i\left(
r-\dfrac{1}{r} \right)\sin \theta
\right|=1 $$
Now, squaring both side and we get,
$$\left| \left( {{r}^{2}}+\dfrac{1}{{{r}^{2}}}+2
\right){{\cos }^{2}}\theta +{{i}^{2}}\left( {{r}^{2}}+\dfrac{1}{{{r}^{2}}}-2
\right){{\sin }^{2}}\theta \right|=1$$
So,
$$ \left( {{r}^{2}}+\dfrac{1}{{{r}^{2}}}+2 \right){{\cos
}^{2}}\theta =1 $$
$$ {{r}^{2}}+\dfrac{1}{{{r}^{2}}}+2\cos 2\theta =1 $$
$$ {{r}^{2}}+\dfrac{1}{{{r}^{2}}}=1-2\cos 2\theta $$
Now,
$$ 1-2\cos 2\theta =0 $$
$$ \Rightarrow \cos 2\theta =\dfrac{1}{2} $$
$$ \Rightarrow \cos 2\theta =cos\dfrac{\pi }{3} $$
$$ \Rightarrow 2\theta =\dfrac{\pi }{3} $$
$$ \Rightarrow \theta =\dfrac{\pi }{6} $$
Then, Z is purely imaginary.
Hence, this is the
answer.