Self Studies

Number Theory Test 42

Result Self Studies

Number Theory Test 42
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\alpha$$ and $$\beta$$ are the roots of $${ 4x }^{ 2 }-16x+c=0,$$ c>0 such that $$1<\alpha <2<\beta <3$$, then the no.of integer values of c is 
    Solution
    Given, $$\alpha$$ and $$\beta$$ are roots of $$4x^2-16x+x=0$$
    where $$a=4$$
    $$b=-16$$
    $$x > 0$$
    now, $$\alpha\beta =\dfrac{a}{a}$$
    $$\Rightarrow \alpha\beta =\dfrac{c}{4}$$
    $$\Rightarrow \beta =\dfrac{c}{4\alpha}$$ ………(i)
    we have $$2 < \beta < 3$$
    $$\Rightarrow 2 < \dfrac{c}{4\alpha} < 3$$ [from $$(1)$$]
    $$\Rightarrow 8 < \dfrac{c}{\alpha} < 12$$
    $$\Rightarrow 8\alpha < c < 12\alpha$$ ………(ii)
    and $$1 < \alpha < 2$$
    $$\Rightarrow \alpha > 1\Rightarrow 8\alpha > 8$$ ……….(iii)
    and $$\alpha < 2$$
    $$\Rightarrow 12\alpha < 24$$ ………..(iv)
    Substituting (iii) and (iv) in (ii) we get
    $$8 < 8\alpha < c < 12\alpha < 24$$ $$[\alpha =9, 10, 11, 12, 13, 14, 15, 16, 13, 18, 19, 20, 21, 22, 23]$$
    $$\Rightarrow 8 < c < 24$$
    Therefore number of integer values of c is $$15$$.

  • Question 2
    1 / -0
    $$\sqrt { \left( \log _ { 3 } \tan x \right) }$$  is real for:
  • Question 3
    1 / -0
    Let P$$\left( x \right) ={ x }^{ 3 }-6{ x }^{ 2 }+Bx+C$$ has 1+5i as a zero and B,C real number, then value of (B+C) is
    Solution
    Given $$1+5{i}$$ is the root of $$P(x)=x^3-6{x^2}+B{x}+C$$

    $$\implies 1-5{i}$$ is also the root of $$P(x)$$

    Let the third root be $$h$$

    $$\implies $$sum of roots is $$6$$

    $$\implies 1+5{i}+1-5{i}+h=6\implies h=4$$

    $$B=(1+5{i}+1-5{i})(4)+(1+5{i})(1-5 i)=8+26=34$$

    $$C=-(1+5{i})(1-5{i})(4)=-104$$

    $$B+C=34-104=-70$$
  • Question 4
    1 / -0
    If $$\left| {z - 3 + 2i} \right|\, \le 4$$ then the difference between the greatest value and the least value of $$\left| z \right|$$ is :
    Solution
    As we know that $$\left| z - {z}_{0} \right| = c$$ represents equation of circle.
    Here,
    $${z}_{0} = 3 - 2i$$
    $$c = 4$$

    Maximum value of $$z = c + \left| z \right|$$
    Minimum value of $$z = c - \left| z \right|$$

    For $$\left| z - 3 + 2i \right| \le 4$$
    Maximum value $$= 4 + \sqrt{{3}^{2} + {\left( -2 \right)}^{2}} = 4 + \sqrt{13}$$
    Miniimum value $$= 4 - \sqrt{{3}^{2} + {\left( -2 \right)}^{2}} = 4 - \sqrt{13}$$

    Difference between maximum and minimum value 
    $$= \left( 4 + \sqrt{13} \right) - \left( 4 - \sqrt{13} \right) \\ = 4 + \sqrt{13} - 4 + \sqrt{13} \\ = 2 \sqrt{13}$$

    Hence, this is the answer.
  • Question 5
    1 / -0
    Let  $$\left| z _ { i } \right| = i , i = 1,2,3,4$$  and  $$\left| 16 z _ { 1 } z _ { 2 } z _ { 3 } + 9 z _ { 1 } z _ { 2 } z _ { 4 } + 4 z _ { 1 } z _ { 3 } z _ { 4 } + z _ { 2 } z _ { 3 } z _ { 4 } \right| = 48 ,$$  then the value of    $$\left| \dfrac { 1 }{ \overline { z } _{ { 1 } } } +\dfrac { 4 }{ \overline { z } _{ { 2 } } } +\dfrac { 9 }{ \overline { z } _{ { 3 } } } +\dfrac { 16 }{ \overline { z } _{ { 4 } } }  \right| .$$
    Solution
    $$\begin{array}{l} \left| { { z_{ i } } } \right| =i\, \, \, \, i=1,2,3,4 \\ \left| { { z_{ 1 } } } \right| =1 \\ \left| { { z_{ 2 } } } \right| =2 \\ \left| { { z_{ 3 } } } \right| =3 \\ \left| { { z_{ 4 } } } \right| =4 \\ \left| { 16{ z_{ 1 } }{ z_{ 2 } }{ z_{ 3 } }+9{ z_{ 1 } }{ z_{ 2 } }{ z_{ 3 } }+4{ z_{ 1 } }{ z_{ 2 } }{ z_{ 3 } }+{ z_{ 2 } }{ z_{ 3 } }{ z_{ 4 } } } \right| =48 \\ \left| { { z_{ 1 } }{ z_{ 2 } }{ z_{ 3 } }{ z_{ 4 } } } \right| \left| { \overline { { z_{ 4 } } } +\overline { { z_{ 3 } } } +\overline { { z_{ 2 } } } +\overline { { z_{ 1 } } }  } \right| =48 \\ 1\times 2\times 3\times 4\times \left| { { z_{ 1 } }+{ z_{ 2 } }+{ z_{ 3 } }+{ z_{ 4 } } } \right| =48 \\ \Rightarrow \left| { { z_{ 1 } }+{ z_{ 2 } }+{ z_{ 3 } }+{ z_{ 4 } } } \right| =2 \\ =\left| { \frac { 1 }{ { { z_{ 1 } } } } +\frac { 4 }{ { { z_{ 2 } } } } +\frac { 9 }{ { { z_{ 3 } } } } +\frac { { 16 } }{ { { z_{ 4 } } } }  } \right| .\left| { \frac { { { z_{ 1 } }{ { \overline { z }  }_{ 1 } } } }{ { { z_{ 1 } } } } +\frac { { { z_{ 2 } }{ { \overline { z }  }_{ 2 } } } }{ { { z_{ 2 } } } } +\frac { { { z_{ 3 } }{ { \overline { z }  }_{ 3 } } } }{ { { z_{ 3 } } } } +\frac { { { z_{ 4 } }{ { \overline { z }  }_{ 4 } } } }{ { { z_{ 4 } } } }  } \right|  \\ =\left| { { z_{ 1 } }+{ z_{ 2 } }+{ z_{ 3 } }+{ z_{ 4 } } } \right| =2 \\ Option\, \, B\, \, is\, \, correct\, \, answer. \end{array}$$
  • Question 6
    1 / -0
    Find the value of $${x}^{3}+7{x}^{2}-x+16$$, when $$x=1+2i$$
    Solution
    Given function $$f(x)=x^3+7x^2-x+16$$
    We know that $$(a+b)^3=a^2+3ab(a+b)+b^3\\(a+b)^2=a^2+b^2+2ab$$
    When $$x=1+2$$
    $$f(1+2i)=(1+2i)^2+(1+2i)^2-(1+2i)+16\\=1+8i^3+3\times2i\times(1+2i)+7\times(1+4i+4i^2)-(1+2i)+16\\=1+8i^3+6i+12i^2+7+28i+28i^2-1-2i+16\\=1-8i+6i-12+7+28i-28-1-2+16[\because i^3=-i,i^2=-1]\\=-17+24i$$
  • Question 7
    1 / -0
    Let 'z' be a complex number satisfying $$|z-2-i|\le 5,$$ Then |z-14-6i| lies in 
    Solution
    Here, $$|z-2-i|\leq 5$$ ………..$$(1)$$
    Now, $$|z-14-6i|=|z-2-i-12-5i|=|(z-2-i)-(12+5i)|$$
    $$\leq |z-2-i|+|12+5i|$$
    $$\leq 5+|12+5i|$$
    $$=5+\sqrt{(12)^2+(5)^2}$$
    $$=5+\sqrt{144+25}$$
    $$=5+\sqrt{169}$$
    $$=5+13$$
    $$=18$$.
    $$\therefore |z-14-6i|\leq 18$$
    and $$|z-14-6i|=|z-2-i-12-5i|$$
    $$=|-(12+5i)+(z-2-i)|$$
    $$\geq ||-(12+5i)|-|z-2-i||$$
    $$\geq |12+5i|-5$$ $$[\because |z-2-i|\leq 5$$ $$\Rightarrow -|z-2-i|\geq -5]$$
    $$=13-5$$
    $$=8$$
    $$\therefore |z-14-6i|\geq 8$$
    $$\therefore |z-14-6i|$$ lies in $$\{8, 18\}$$.

  • Question 8
    1 / -0
    If  $$w = \dfrac { z } { z - \dfrac { 1 } { 3 } i }$$  and  $$| w | = 1$$  then  $$z$$  lies on
    Solution
    $$\begin{array}{l} Given \\ \omega =\frac { { 3z } }{ { 3z-i } } \, \, \, \, \, \, \therefore \left| \omega  \right| =\frac { { 3\left| z \right|  } }{ { \left| { 3z-i } \right|  } }  \\ \Rightarrow \left| { 3z-i } \right| =3\left| z \right|  \\ \Rightarrow \left| { 3\left( x \right) +i\left( { 3y-1 } \right)  } \right| =\left| { 3\left( { x+iy } \right)  } \right| \, \, \, \, \, \left( { z=x+iy } \right)  \\ \Rightarrow { \left( { 3x } \right) ^{ 2 } }+{ \left( { 3y-1 } \right) ^{ 2 } }=9\left( { { x^{ 2 } }+{ y^{ 2 } } } \right)  \\ \Rightarrow 6y-1=0 \\ Which\, is\, straight\, line \\ Hence,\, option\, D\, is\, the\, correct\, answer. \end{array}$$
  • Question 9
    1 / -0
    The real part of  $$\left[ 1 + \cos \left( \dfrac { \pi } { 5 } \right) + i \sin \left( \dfrac { \pi } { 5 } \right) \right] ^ { - 1 }$$  is
    Solution
    We have,
    $$\begin{array}{l} \dfrac { 1 }{ { 1+\cos  \left( { \dfrac { \pi  }{ 5 }  } \right) +i\sin  \left( { \dfrac { \pi  }{ 5 }  } \right)  } }  \\ =\dfrac { 1 }{ { 2{ { \cos   }^{ 2 } }\dfrac { \pi  }{ { 10 } } +i2\sin  \left( { \dfrac { \pi  }{ { 10 } }  } \right) \cos  \left( { \dfrac { \pi  }{ { 10 } }  } \right)  } }  \\ =\dfrac { 1 }{ { 2\cos  \dfrac { \pi  }{ { 10 } } \left[ { \cos  \dfrac { \pi  }{ { 10 } } +i\sin  \dfrac { \pi  }{ { 10 } }  } \right]  } }  \\ =\dfrac { { \cos  \dfrac { \pi  }{ { 10 } } -i\sin  \dfrac { \pi  }{ { 10 } }  } }{ { 2\cos  \dfrac { \pi  }{ { 10 } }  } }  \\ Thus,\, { { Re } }al\, part=\dfrac { 1 }{ 2 }  \\ Hence,\, the\, option\, B\, is\, the\, required\, answer. \end{array}$$

    Hence, option $$B$$ is the correct answer.
  • Question 10
    1 / -0
    $$\dfrac{1-2i}{2+i}+\dfrac{4-i}{3+2i}=$$
    Solution
    $$ \frac{1-2i}{2+1} +\frac{4-1}{(3+2i)} $$

    $$ \frac{(1-2i)(3+2i)+(4-i)(2+i)}{(2+i)(3+2i)}$$

    $$ \frac{3+2i-6i+4+8+4i-2i+1}{6+4i+3i-2}$$

    $$ \frac{3-4i+12+2i+1}{6+7i-2}$$

    $$ \frac{-2i+16}{7i+4}$$

    $$ \frac{16-2i}{4+7i}\times \frac{(4-7i)}{4-7i}$$

    $$ \frac{64-112i-8i-14}{16+49}$$

    $$ \frac{50-120i}{65}$$

    $$ = \frac{10-24i}{13}$$

    $$ = \frac{10}{13}-\frac{24i}{13}$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now