Self Studies

Number Theory Test 43

Result Self Studies

Number Theory Test 43
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The principle amplitude of $$(\sin 40^{o}+i \cos 40^{o})^{5}$$ is
    Solution
    $$40°=2\cfrac { \pi  }{ 9 } ,50°=\cfrac { 5\pi  }{ 18 } $$

    So, $$\left( \sin { 40° } +i\cos { 40° }  \right) =\cos { 50° } +i\sin { 50° } $$

    Let $$T={ \left( \sin { 40° } +i\cos { 40° }  \right)  }^{ 5 }={ \left( \cos { 50° } +i\sin { 50° }  \right)  }^{ 5 }$$

    $$T={ \left( { e }^{ i50° } \right)  }^{ 5 }=\left( { e }^{ i\cfrac { 5\pi  }{ 18 } \times 5 } \right) ={ e }^{ i\cfrac { 25\pi  }{ 18 }  }$$

    So, $$25\cfrac { \pi  }{ 18 } =250°$$

    Thus, principal argument$$=-180°+250°=70°$$
  • Question 2
    1 / -0
    The value of the sum $$\sum _{ n=1 }^{ 13 }{ ({ i }^{ n }+{ i }^{ n+1 }) } $$ , where $$i=\sqrt { -1 } $$ , equals
    Solution
    As we know that $$i+i^2+i^3+i^4=0$$
    $$\displaystyle\sum ^{13}_{n=1} (i^n+i^{n+1})=\sum ^{13}_{n=1}(1+i)(i^n)=(1+i)\sum ^{13}_{n=1} i^{n}=(1+i)(0+0+i^{13})=(1+i)i=i+i^2=i-1$$
  • Question 3
    1 / -0
    $$z_1$$ and $$z_2$$ are two non-zero complex numbers such that $$z_1=2+4i\\z_2=5-6i$$, then $$z_2-z_1$$ equals
    Solution
    $$z_1=2+4i\\\\z_2=5-6i\\\\z_2-z_1=5-6i-2-4i=3-10i$$
  • Question 4
    1 / -0
    The imaginary part of $$t ; t \in R$$ is 
    Solution

  • Question 5
    1 / -0
    IF $$z_1=1+i,z_2=1-i$$ find $$z_1z_2$$
    Solution
    $$z_1=1+i$$

    $$z_2=1-i$$

    $$z_1z_2=1-(-1)=2$$

             $$=1+1$$

              $$=1-i+1+i$$

    $$z_1z_2=z_1+z_2$$
  • Question 6
    1 / -0
    The real value of $$'\theta '$$, for which the expression $$\frac { 1+i\cos { \theta  }  }{ 1-2i\cos { \theta  }  } $$ is a real number is
    Solution

  • Question 7
    1 / -0
    The greatest and least value of $$\left | z \right |$$ if $$z$$ satisfies $$\left | z - 5 + 5i \right |$$ $$\leq 5$$ are 
    Solution
     $$\left | z - 5 + 5i \right |$$ $$\leq 5$$  represents equation of circle, where centre of circle is (5,-5)

    Maximum value of $$z=c+\sqrt{a^2+b^2}$$

    Maximum value of $$z=c-\sqrt{a^2-b^2}$$

    Here, $$a=5, b=-5$$ and $$c=5$$

    Maximum  value of $$|z|=|5+\sqrt{25+25}|$$

                                            $$=|5+\sqrt{50}|$$

                                             $$=5+5\sqrt{2}$$

    Minimum value of  $$|z|=|5-\sqrt{50}|$$

                                            $$=|5-5\sqrt{2}|$$

                                             $$=5\sqrt{2}-5$$


  • Question 8
    1 / -0
    let $$z=\left| \begin{matrix} 1 & 1+2i & -5i \\ 1-2i & -3 & 5+3i \\ 5i & 5-3i & 7 \end{matrix} \right|$$ then
    Solution
    From given, we have,

    $$z=\begin{vmatrix}1&1+2i&-5i\\ 1-2i&-3&5+3i\\ 5i&5-3i&7\end{vmatrix}$$

    $$=1 \times \begin{vmatrix}-3&5+3i\\ 5-3i&7\end{vmatrix}-(1+2i) \times \begin{vmatrix}1-2i&5+3i\\ 5i&7\end{vmatrix}-5i \times \begin{vmatrix}1-2i&-3\\ 5i&5-3i\end{vmatrix}$$

    $$=1\cdot \left(-55\right)-\left(1+2i\right)\left(22-39i\right)-5i\left(-1+2i\right)$$

    $$=-145$$

    Hence $$z$$ is purely real
  • Question 9
    1 / -0
    How many prime numbers are there in the following series.
    $$1,2,7,9,13,15,21,23,27,29$$
    Solution

  • Question 10
    1 / -0
    The imaginary roots of the equation $${ ({ x }^{ 2 }+2) }^{ 2 }+8{ x }^{ 2 }=6x({ x }^{ 2 }+2)$$ are ____________.
    Solution
    $${\left({x}^{2}+2\right)}^{2}+8{x}^{2}=6x\left({x}^{2}+2\right)$$

    $${\left({x}^{2}+2\right)}^{2}-6x\left({x}^{2}+2\right)+8{x}^{2}=0$$

    Let $$t={x}^{2}+2$$

    $$\Rightarrow\,{t}^{2}-6xt+8{x}^{2}=0$$

    $$\Rightarrow\,{t}^{2}-2t\times 3x+9{x}^{2}-{x}^{2}=0$$

    $$\Rightarrow\,{\left(t-3x\right)}^{2}-{x}^{2}=0$$

    $$\Rightarrow\,{\left({x}^{2}+2-3x\right)}^{2}-{x}^{2}=0$$ where $$t={x}^{2}+2$$

    $$\Rightarrow\,{\left({x}^{2}-3x+2\right)}^{2}-{x}^{2}=0$$

    $$\Rightarrow\,\left({x}^{2}-3x+2+x\right)\left({x}^{2}-3x+2-x\right)=0$$

    $$\Rightarrow\,\left({x}^{2}-2x+2\right)\left({x}^{2}-4x+2\right)=0$$

    $$\Rightarrow\,{x}^{2}-2x+2=0,\,or\,{x}^{2}-4x+2=0$$

    $$\Rightarrow\,x=\dfrac{2\pm\sqrt{4-4\times\,1\times 2}}{2},\,or\,x=\dfrac{-4\pm\sqrt{16-4\times 1\times 2}}{2}$$

    $$\Rightarrow\,x=\dfrac{2\pm\sqrt{4-8}}{2},\,or\,x=\dfrac{-4\pm\sqrt{16-8}}{2}$$

    $$\Rightarrow\,x=\dfrac{2\pm\sqrt{-4}}{2},\,or\,x=\dfrac{-4\pm\sqrt{8}}{2}$$

    $$\Rightarrow\,x=\dfrac{2\pm 2i}{2},\,or\,x=\dfrac{-4\pm\,2\sqrt{2}}{2}$$

    $$\Rightarrow\,x=1\pm i,\,or\,x=-2\pm\,\sqrt{2}$$

    Hence the roots are $$\left\{1+i,\,1-i,\,-2+\sqrt{2},\,-2-\sqrt{2}\right\}$$

    Imaginary roots are $$\left\{1+i,\,1-i\right\}$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now