$${\left({x}^{2}+2\right)}^{2}+8{x}^{2}=6x\left({x}^{2}+2\right)$$
$${\left({x}^{2}+2\right)}^{2}-6x\left({x}^{2}+2\right)+8{x}^{2}=0$$
Let $$t={x}^{2}+2$$
$$\Rightarrow\,{t}^{2}-6xt+8{x}^{2}=0$$
$$\Rightarrow\,{t}^{2}-2t\times 3x+9{x}^{2}-{x}^{2}=0$$
$$\Rightarrow\,{\left(t-3x\right)}^{2}-{x}^{2}=0$$
$$\Rightarrow\,{\left({x}^{2}+2-3x\right)}^{2}-{x}^{2}=0$$ where $$t={x}^{2}+2$$
$$\Rightarrow\,{\left({x}^{2}-3x+2\right)}^{2}-{x}^{2}=0$$
$$\Rightarrow\,\left({x}^{2}-3x+2+x\right)\left({x}^{2}-3x+2-x\right)=0$$
$$\Rightarrow\,\left({x}^{2}-2x+2\right)\left({x}^{2}-4x+2\right)=0$$
$$\Rightarrow\,{x}^{2}-2x+2=0,\,or\,{x}^{2}-4x+2=0$$
$$\Rightarrow\,x=\dfrac{2\pm\sqrt{4-4\times\,1\times 2}}{2},\,or\,x=\dfrac{-4\pm\sqrt{16-4\times 1\times 2}}{2}$$
$$\Rightarrow\,x=\dfrac{2\pm\sqrt{4-8}}{2},\,or\,x=\dfrac{-4\pm\sqrt{16-8}}{2}$$
$$\Rightarrow\,x=\dfrac{2\pm\sqrt{-4}}{2},\,or\,x=\dfrac{-4\pm\sqrt{8}}{2}$$
$$\Rightarrow\,x=\dfrac{2\pm 2i}{2},\,or\,x=\dfrac{-4\pm\,2\sqrt{2}}{2}$$
$$\Rightarrow\,x=1\pm i,\,or\,x=-2\pm\,\sqrt{2}$$
Hence the roots are $$\left\{1+i,\,1-i,\,-2+\sqrt{2},\,-2-\sqrt{2}\right\}$$
Imaginary roots are $$\left\{1+i,\,1-i\right\}$$