Self Studies

Number Theory Test 47

Result Self Studies

Number Theory Test 47
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Which of the following is a pair of twin-prime number ? 
    Solution
    The even numbers between $$ 68 $$ and $$ 90 $$ is $$ 70 , 72 , 74 , 76 , 78 , 80 , 82 , 84 , 86 , 88 , = 10 $$ numbers
  • Question 2
    1 / -0
    If $$ \displaystyle z_{0}=\frac{1-i}{2}$$,  then $$ \displaystyle \left (1+z_{0}  \right )\left (1+z_{0}^{{2}^{1}}  \right )\left (1+z_{0}^{{2}^{2}}  \right ).......... \left (1+z_{0}^{2^n}  \right )$$  must be
    Solution
    Let $$P=(1+z_0)(1+{z_0}^{2^1})+(1+{z_0}^{2^2})....(1+{z_0}^{2^n})$$

    $$\Rightarrow (1-z_0)P=(1-z_0)(1+z_0)(1+{z_0}^{2^1})+(1+{z_0}^{2^2})....(1+{z_0}^{2^n})$$

    $$\Rightarrow (1-z_0)P=(1-{z_0}^{2^2})(1+{z_0}^{2^2}).......(1+{z_0}^{2^n})$$

    $$\Rightarrow (1-z_0)P=1-{z_0}^{2^{n+1}}$$

    $$\Rightarrow P=\dfrac{1-{z_0}^{2^{n+1}}}{1-{z_0}}$$

    $$\Rightarrow P=\dfrac{1-({z_0}^2)^{2n}}{1-z_0}$$

    $$n>1$$
    Since, $$z_0=\dfrac{1-i}{2}$$

    $${z_0}^2=\dfrac{1-1-2i}{4}$$

    $$\Rightarrow {z_0}^2=\dfrac{-i}{2}$$

    $$\therefore \ P=\dfrac{1-\left(\dfrac{-i}{2}\right)^{2^n}}{1-z_0}$$

    $$\Rightarrow P=\dfrac{1-\dfrac{1}{2^{2^n}}}{\dfrac{1+i}{2}}=\dfrac{\left(1-\dfrac{1}{2^{2^n}}\right)2(1-i)}{1+1}$$

    $$\Rightarrow P=(1-i)\left(1-\dfrac{1}{2^{2^n}}\right)$$
  • Question 3
    1 / -0
    The number of solutions of $$log _{\frac{1}{5}}log_{\frac{1}{2}}(\left | z \right |^{2}+4\left | z \right |+3)< 0$$ is/are?
    Solution
    The glven inequality becomes $$log_{\frac{1}{2}}|\mathrm{z}|^{2}+4|\mathrm{z}|+3>1$$, since $$\displaystyle \frac{1}{5}<1$$
    $$\displaystyle \Rightarrow|\mathrm{z}|^{2}+4|\mathrm{z}|+3<\frac{1}{2}$$ 
    $$\Rightarrow(|\mathrm{z}|+2)^{2}$$ + 1 $$<\displaystyle \frac{1}{2}$$
    $$(|\displaystyle \mathrm{z}|+2)^{2}<\frac{-1}{2}$$
    This is not possible. Hence, there is no solution. 
  • Question 4
    1 / -0
    Let $$z$$ be a complex number and $$c$$ be a real number $$\geq $$ 1 such that z + $$c\left | z+1 \right |+i=0 ,$$ then $$c$$ belongs to 
    Solution
    Since $$c$$ $$\left | z+1 \right |$$ is real
    $$z + i$$ is real
     let $$z-i = x $$, where $$x$$ is real
    $$z+i=-c$$ $$\left | z+1 \right |$$  (given)
    $$x^{2}=c^{2}\left \{ x+1 \right \}^{2}+1^{2})$$ 
    $$(c^{2}-1)x^{2}+2c^{2}x+2c^{2}=0$$ 
    As $$x$$ is real $$4c^{4}-8c^{2}(c^{2}-1)\geq 0$$ 
    $$4c^{2}-(c^{2}-2)\leq 0$$ 
    $$c^{2}\leq 2$$ 
    $$c\leq \sqrt{2}$$
    But $$c\geq1$$ 
    $$\Rightarrow c\, \, \epsilon [1,\sqrt{2}]$$ 
  • Question 5
    1 / -0
    If $$x = 2 + 5i($$where $$1 i = \sqrt{-1})$$ and $$2(\displaystyle \frac{1}{1! 9!}  + \frac{1}{3! 7!}) + \frac{1}{5! 5!} = \frac{2^{a}}{b!}$$ then $$ x^{3}-5x^{2}+33x-10 = $$
    Solution
    $$ \displaystyle \frac{10! 2^{a}}{b!} = 2[^{10}C_{1} + ^{10}C_{3}] + ^{10} C_{5}$$

    $$ \displaystyle  \frac{10! 2^{a}}{b!} = ^{10}C_{1} + ^{10}C_{3} + ^{10}C_{5} + ^{10}C_7 + ^{10}C_{9} = 2^{9}$$

    $$ \therefore  a = 9, b = 10$$

    $$ x = 2 + 5i$$
    $$ (x - 2)^{2} = - 25$$
    $$x^{2} - 4x + 29 = 0$$
    $$ \therefore  x^{3} - 5x^{2} + 33x - 10 = (x - 1)(x^{2} - 4x + 29) + 19$$
    $$\Rightarrow 19 = a + b$$
  • Question 6
    1 / -0
    lf $$\displaystyle \log_{\tan 30^{\circ}}\left(\frac{2|Z|^{2}+2|Z|-3}{|z|+1}\right) <-2$$ then
    Solution
    we have,
    $$\Rightarrow  log_{(\dfrac{1}{\sqrt{3}})}(\dfrac{2|z|^{2}+2|z|-3}{|z|+1})<-2$$

    $$\Rightarrow \dfrac{2|z|^{2}+2|z|-3}{|z|+1}>(\dfrac{1}{\sqrt{3}})^{-2}=(\sqrt{3})^{2}=3$$    [as$$\dfrac{1}{\sqrt{3}}<1$$ so equality sign changes]

    $$\Rightarrow 2|z|^{2}+2|z|-3>3|z|+3$$

    $$\Rightarrow 2|z|^{2}-|z|-6>0$$

    $$\Rightarrow 2|z|^{2}-4|z|+3|z|-6>0$$

    $$\Rightarrow 2|z|  (|z|-2)+3  (|z|-2)>0$$

    $$\Rightarrow (2|z|+3)  (|z|-2)>0$$

    $$\Rightarrow |z|>2$$

  • Question 7
    1 / -0
    Given $$z$$ is a complex number with modulus $$1$$. Then the equation in $$a$$, $$\left(\dfrac{1+ia}{1-ia}\right )^4=z$$ has
    Solution
    $$\left (\dfrac{1+ia}{1-ia}\right )^4 = z$$

    $$\left (\dfrac{-i(i-a)}{-i(i+a)}\right )^4 = z$$

    $$\left (\dfrac{a-i}{a+i}\right )^4= z$$

    $$\left |\dfrac{a-i}{a+i}\right |^4= |z| =1$$

    $$|a-i| ^4 = |a+i|^4$$

    $$|a-i| = |a+i|$$

    $$\therefore a$$ lies on the perpendicular bisector of $$i$$ and $$-i$$.
    $$a $$ lies on real axis. Hence the roots all are real and distinct.
  • Question 8
    1 / -0
    Which of the following is not a composite

    number?




  • Question 9
    1 / -0
    Let $$x_1, x_2,$$ are the roots of quadratic equation $$x^2 + ax + b = 0$$, Where $$ a, b$$ are complex numbers and $$y_1, y_2$$ are the roots of the quadratic equation $$y^2 + \left|a\right| y + \left|b\right| =0$$. If $$\left|x_1\right| = \left|x_2\right| = 1$$, then 
    Solution
    Now 
    $$x_{1}.x_{2}=b$$
    Hence
    $$|x_{1}.x_{2}|$$
    $$=|x_{1}|.|x_{2}|$$
    $$=1.1$$
    $$=1$$
    $$=|b|$$ ...(i)
    And 
    $$-a=x_{1}+x_{2}$$
    $$|a|=|x_{1}+x_{2}|$$
    Now applying triangle inequality, we get 
    $$|x_{1}+x_{2}|\leq |x_{1}|+|x_{2}|$$
    Hence
    $$|a|\leq |x_{1}|+|x_{2}|$$
    Hence
    $$|a|\leq 2$$
    Considering 
    $$|a|=2$$ we get 
    $$y^{2}+2y+1=0$$
    $$(y+1)^{2}=0$$
    $$y=-1,-1$$
    Hence
    $$|y_{1}|=|y_{2}|=1$$.
  • Question 10
    1 / -0
    Dividing f(z) by $$z-i$$, we obtain the remainder $$i$$ and dividing it by $$z+i$$, we get the remainder $$1+i$$, then remainder upon the division of f(z) by $$z^2+1$$ is
    Solution
    $$\textbf{Step -1: Using remainder theorem to get the following equations.}$$
                      $$\text{Given, Dividing }f(z) \text{ by } z - i \text{, we get remainder }i$$
                      $$\text{Therefore by remainder theorem, }f(i) = i$$                                             $$\dots \text{(i)}$$
                      $$\text{Given, Dividing }f(z) \text{ by } z + i \text{, we get remainder }1 + i$$
                      $$\text{Therefore by remainder theorem, }f(-i) = 1+i$$                                  $$\dots \text{(ii)}$$
                      $$\text{Let }R(x) \text{ be the remainder when }f(z)\text{is divided by }z^2 + 1$$
                      $$\text{degree of R(z) is 1, hence }R(z) = az+b$$
                      $$\text{we can simplify }z^2 + 1 = (z -i) (z+i)$$
                      $$\therefore f(z) = Q(z)(z-i)(z+i) + R(z)$$
    $$\textbf{Step -2: Solving for a and b.}$$
                      $$\text{From (i) and (ii)}$$
                      $$f(i) = i = ai + b$$
                      $$\Rightarrow b = i - ai$$
                      $$f(-i) = 1+i = -ai +b$$
                      $$\Rightarrow -ai + i - ai = 1+i$$
                      $$\Rightarrow -2ai = 1$$
                      $$\Rightarrow a = -\dfrac{1}{2i}$$
                               $$= -\dfrac{1}{2i} \times \dfrac{i}{i}$$
                               $$= -\dfrac{i}{2(-1)}$$
                      $$\therefore a = \dfrac{i}{2}$$
                      $$ b = i - ai$$
                      $$\Rightarrow b = i - \dfrac{i}{2} (i)$$
                      $$\Rightarrow b = i - \dfrac{(-1)}{2}$$
                      $$\Rightarrow b = i + \dfrac{1}{2}$$
                      $$\therefore R(z) = az+b$$
                                $$= \dfrac{i}{2}z + i + \dfrac{1}{2}$$
                      $$R(z) = \dfrac{1}{2}(iz + 1) + i$$
    $$\textbf{Hence option B is correct}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now