Self Studies

Number Theory Test 48

Result Self Studies

Number Theory Test 48
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The number of complex numbers $$z$$ such that $$\left|z\right| = 1$$ and $$\left|z/\overline{z} + \overline{z}/z\right| = 1$$ is $$(arg(z) \in [0, 2\pi))$$ 
    Solution

  • Question 2
    1 / -0
    Consider a complex number $$z$$ which satisfies the equation $$\left |z-\left (\displaystyle\frac{4}{z}\right )\right |=2$$, then the absolute difference between the least and the greatest moduli of complex numbers is,
    Solution
    We have
    $$\left ||z|-\left |\dfrac {4}{z}\right |\right | \leq \left |z-\dfrac {4}{z}\right |=2$$

    $$\Rightarrow -2\leq |z|-\dfrac {4}{|z|}\leq 2$$

    $$\Rightarrow |z|^2+2|z|-4\geq 0$$ and $$|z|^2-2|z|-4\leq 0$$

    $$\Rightarrow (|z|+1)^2-5\geq 0$$ and $$(|z|-1)^2 \leq 5$$

    $$\Rightarrow (|z|+1+\sqrt 5)(|z|+1-\sqrt 5) \geq 0$$

    and 

    $$(|z|-1+\sqrt 5)\times (|z|-1-\sqrt 5) \leq 0$$

    $$\Rightarrow |z|\leq -\sqrt 5-1$$ or $$|z| \geq \sqrt 5-1$$ 

    and 

    $$\sqrt 5-1 \leq |z|\leq \sqrt 5+1$$

    $$\Rightarrow \sqrt 5-1 \leq |z|\leq \sqrt 5+1$$

    Hence, the least modulus is $$\sqrt 5-1$$ and the greatest modulus is $$\sqrt 5+1$$

    Hence required difference $$=2$$
  • Question 3
    1 / -0
    Find the value of $$x$$ such that $$\displaystyle \frac{(x + \alpha)^2 - (x + \beta)^2}{ \alpha + \beta} = \frac{sin  2 \theta}{sin^2  \theta}$$. when $$\alpha$$ and $$\beta $$ are the roots of $$t^2 - 2t + 2 = 0$$
    Solution
    $$t^{2}-2t+2=0$$
    $$(t-1)^{2}-1+2=0$$
    $$(t-1)^{2}=-1$$
    $$t=1\pm i$$
    Hence
    $$\alpha+\beta=2$$
    $$\alpha-\beta=2i$$
    Now let $$n=2$$
    We get 
    $$\dfrac{2x(\alpha-\beta)+\alpha^{2}-\beta^{2}}{2}=\dfrac{sin2\theta}{sin^{2}\theta}$$
    Hence
    $$\dfrac{4ix+2i-(-2i)}{2}=\dfrac{2sin\theta.cos\theta}{sin^{2}\theta}$$

    $$2ix+2i=2cot\theta$$
    $$ix=cot\theta-i$$
    $$-x=icot\theta+1$$
    $$x=-(1+icot\theta)$$
  • Question 4
    1 / -0
    If $$z_1, z_2$$ be two non zero complex numbers satisfying the equation $$\displaystyle \left | \frac{z_1 + z_2}{z_1 - z_2} \right | = 1$$ then $$\displaystyle \frac{z_1}{z_2} + \left ( \frac{z_1}{z_2} \right )$$ is
    Solution
    let $$\frac{z_{1}}{z_{2}} =x$$
    given $$|\frac{x+1}{x-1}| = 1$$
    $$\Rightarrow |x+1|=|x-1|$$
    Let $$x=a+ib$$
    We get $$|a+1+ib|=|a-1+ib|$$
    $$\Rightarrow a=0$$
    Therefore $$x=ib$$ and $$\overline { x } =-ib$$
    Therefore $$x+\overline { x } =ib-ib=0$$
    So the correct option is $$A$$
  • Question 5
    1 / -0
    Find the range of real number $$\alpha$$ for which the equation $$z + \alpha |z - 1| + 2i = 0;  z= x + iy$$ has a solution. Find the solution.
    Solution
    $$x+iy+\alpha(\sqrt{(x-1)^{2}+y^{2}})+2i=0$$
    $$x+i(y+2)=\alpha(\sqrt{(x-1)^{2}+y^{2}}$$
    $$x^{2}-(y+2)^{2}+i2x(y+2)=\alpha^{2}((x-1)^{2}+y^{2})$$
    Real part 
    $$x^{2}-\alpha(x-1)^{2}-\alpha(y^{2})=0$$ and 
    Imaginary part 
    $$2x(y+2)=0$$
    $$x(y+2)=0$$
    Either $$x=0 $$or $$y=-2$$ ...if the above equations have a solution.
    Considering y=-2,
    Hence
    $$\alpha\epsilon[-\dfrac{\sqrt{5}}{2},\dfrac{\sqrt{5}}{2}]$$
    Hence
    $$x=\dfrac{5}{2}$$ if $$|\alpha|\neq1$$.
  • Question 6
    1 / -0
    Find the regions of the z-plane for which $$\displaystyle \left | \frac{z - a}{z + \overline a} \right | < 1, = 1$$ or $$> 1$$. when the real part of a is positive.
    Solution
    Let 
    $$z=x+iy$$ and $$a$$ be a fixed complex number $$(a+ib)$$.
    Hence
    $$|\dfrac{z-a-ib}{z+a-ib}|=1$$
    $$|(x-a)+i(y-b)|=|(x+a)+i(y-b)|$$
    $$(x-a)^{2}=(x+a)^{2}$$
    $$2x(a)=0$$
    $$x=0$$ ... imaginary axis.
    If 
    $$|\dfrac{z-a-ib}{z+a-ib}|<1$$
    Then
    $$(x-a)^{2}<(x+a)^{2}$$
    Or 
    $$x>0$$ ... positive real axis.
    If 
    $$|\dfrac{z-a-ib}{z+a-ib}|>1$$
    $$(x-a)^{2}>(x+a)^{2}$$
    $$x<0$$ ... negative real axis.
  • Question 7
    1 / -0
    Find all complex numbers satisfying the equation $$2|z|^2 + z^2 - 5 + i \sqrt{3} = 0$$
    Solution
    $$Let\quad z=a+ib\\ Thus:\quad 2({ a }^{ 2 }+{ b }^{ 2 })+({ a }^{ 2 }-{ b }^{ 2 }+2abi)-5+i\sqrt { 3 } =0\\ =>3{ a }^{ 2 }+{ b }^{ 2 }-5=0\quad and\quad 2ab+\sqrt { 3 } =0=>a=-\frac { \sqrt { 3 }  }{ b } \\ Substituting\quad in\quad the\quad first:\quad \frac { 9 }{ 4{ b }^{ 2 } } +{ b }^{ 2 }=5=>{ b }^{ 2 }=\frac { 9 }{ 2 } \quad or\quad \frac { 1 }{ 2 } \\ =>b=\pm \frac { 3 }{ \sqrt { 2 }  } \quad or\quad \pm \frac { 1 }{ \sqrt { 2 }  } =>a=\mp \frac { 1 }{ \sqrt { 6 }  } \quad or\quad \mp \frac { \sqrt { 3 }  }{ \sqrt { 2 }  } =\mp \frac { \sqrt { 6 }  }{ 2 } \\ =>z=\pm \left( \frac { \sqrt { 6 }  }{ 2 } -\frac { i }{ \sqrt { 2 }  }  \right) \quad or\quad \pm \left( \frac { 1 }{ \sqrt { 6 }  } -\frac { 3i }{ \sqrt { 2 }  }  \right) \\ $$
    Hence, (d) is correct.
  • Question 8
    1 / -0
    Find the real values of the parameter $$a$$ for which at least one complex number $$z = x + iy$$ satisfies both the equality $$|z + \sqrt{2}| = a^2 - 3a + 2$$ and the inequality $$|z + i \sqrt{2}| < a^2$$.
    Solution
    Let $$z = x + iy$$
    $$\Rightarrow |z+\sqrt{2}|=\sqrt{x^2 + 2\sqrt{2}x + 2 + y^2} = a^2 - 3a + 2$$ .................(1)

    Also, 
    $$|z+i\sqrt{2}|=\sqrt{y^2 + 2\sqrt{2}y + 2 + x^2} < a^2$$..........................(2)

    Since, modulus of a complex number is greater than zero,
    Hence, $$a^2 - 3a + 2 > 0$$      $$[\text {from (1)}]$$
    $$\Rightarrow (a-2)(a-1)>0$$
    Solving the inequality, we get,
    $$\Rightarrow a \in (-\infty, 1) \cup (2,\infty)$$   ... (3)

    and because of (2), $$a$$ cannot be zero
    So, $$a≠0$$ .... (4)

    The distance between $$-\sqrt2$$ and $$-i\sqrt2$$ is $$2$$. So, for the first circle to overlap with the interior of the second circle the following two inequalities need to hold:

    $$r_1 + r_2 > 2$$
    $$\Rightarrow 2a^2 - 3a + 2 > 2$$
    $$\Rightarrow \left(a-\dfrac34\right)^2 > \dfrac9{16}$$

    $$\Rightarrow a\in(-\infty, 0) \cup \left(\dfrac32,\infty\right)$$    ... (5)

    and $$r_1 < r_2 + 2$$
    $$a^2 - 3a + 2 < a^2 + 2$$
    $$a>0$$   ... (6)

    From (3), (4), (5), (6), 
    We can say that
    $$a>2$$
  • Question 9
    1 / -0
    If z be a complex number satisfying$$\displaystyle\ z^{4}+z^{3}+2z^{2}+z+1=0$$ then $$\displaystyle\ |z|$$ is 
    Solution
    $${ z }^{ 4 }+{ z }^{ 3 }+2{ z }^{ 2 }+z+1=0$$

    $$\left[ { z }^{ 4 }+2{ z }^{ 2 }+1 \right] +\left[ { z }^{ 3 }+z \right] =0$$

    $$\left[ { z }^{ 2 }+1 \right] \left[ { z }^{ 2 }+1+z \right] =0$$

    $${ z }^{ 2 }+1=0\Longrightarrow z=\pm i$$

    $$\left| z \right| =1$$
    or
    $${ z }^{ 2 }+z+1=0$$

    $$z=\cfrac { -1\pm \sqrt { 1-4 }  }{ 2 } =\cfrac { -1\pm \sqrt { 3i }  }{ 2 } $$

    $$\left| z \right| =\sqrt { \cfrac { 1 }{ 4 } +\cfrac { 3 }{ 4 }  } =1$$
    $$\therefore \boxed { \left| z \right| =1 } $$
  • Question 10
    1 / -0
    $$\displaystyle { \left( \frac { \sqrt { 3 } +i }{ 2 }  \right)  }^{ 6 }+{ \left( \frac { i-\sqrt { 3 }  }{ 2 }  \right)  }^{ 6 }=$$
    Solution
    We have $$\displaystyle \frac { \sqrt { 3 } +i }{ 2 } =\frac { i\sqrt { 3 } +{ i }^{ 2 } }{ 2i }  $$ (Here we multiplied the numerator and denominator by $$(-i)$$ on the LHS)
    We get: $$-i\left( \frac { -1+\sqrt { 3 } i }{ 2 }  \right) =i\omega $$ 
    Simliarly applying the same idea we get the steps below:
    and $$\displaystyle \frac { i-\sqrt { 3 }  }{ 2 } =\frac { { i }^{ 2 }-i\sqrt { 3 }  }{ 2i } =-i\left( \frac { -1-\sqrt { 3 } i }{ 2 }  \right) =-i{ \omega  }^{ 2 }$$
    Hence $$\displaystyle { \left( \frac { \sqrt { 3 } +i }{ 2 }  \right)  }^{ 6 }+{ \left( \frac { i-\sqrt { 3 }  }{ 2 }  \right)  }^{ 6 }={ \left( -i\omega  \right)  }^{ 6 }+{ \left( -i{ \omega  }^{ 2 } \right)  }^{ 6 }\\ \\ ={ i }^{ 6 }\left( { \omega  }^{ 6 }+{ \omega  }^{ 12 } \right) =-1\left( 1+1 \right) =-2$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now