Self Studies

Number Theory Test 49

Result Self Studies

Number Theory Test 49
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let $$\displaystyle\ z_{1}= a+ib, z_{2}= p+iq$$ be two unimodular complex numbers such that $$\displaystyle\ Im(z_{1}z_{2})=1$$. If$$\displaystyle\ \omega_{1}= a+ip, \omega_{2}=b+iq$$ then
    Solution
    $$z_1 = a + ib$$ and $$z_2 = p + iq$$
    Given that $$Im(z_1z_2) = 1$$, so $$aq + bp = 1$$
    Now, $$\omega_1 = a + ip, \omega_2 = b + iq$$
    $$\Rightarrow \omega_1\omega_2 = ab - pq + i(aq + bp)$$
    $$\Rightarrow Im(\omega_1\omega_2) = 1$$

  • Question 2
    1 / -0
    If $$z = x+iy$$ and $$w = \dfrac{(1-iz)}{(z-i)}$$, then $$|w| = 1$$ implies that, in the complex plane
    Solution
    Given  $$|w|$$$$=1$$

    $$1=|\dfrac{1-iz}{z-i}|$$

    $$\Rightarrow |z-i|=|1-iz|$$.....(i)

    Now let $$z=x+iy$$
    $$\Rightarrow iz=-y+ix$$

    Put in (i)

    $$\Rightarrow x^{2}+(y-1)^{2}=(y+1)^{2}+x^{2}$$

    $$\Rightarrow (y+1)^{2}-(y-1)^{2}=0$$

    $$\Rightarrow (2y)(2)=0$$

    $$\Rightarrow y=0$$.

    This is the equation of the x-axis.
  • Question 3
    1 / -0
    If $$(\sqrt 3-i)^n=2^n, n\in N$$, then $$n$$ is a multiple of
    Solution
    $$\sqrt3-i = 2\left(\dfrac{\sqrt{3}-i}{2}\right)$$
    $$=2.e^{-i\frac{\pi}{6}}$$
    Hence, $$\left(2.e^{-i\frac{\pi}{6}}\right)^{n}=2^{n}$$

    $$2^{n}e^{-i\frac{n\pi}{6}}=2^{n}.e^{i2k\pi}$$,     $$k\in N$$
    $$\because e^{i2k\pi} = 1$$

    Hence, $$-\dfrac{n\pi}{6}=2k\pi$$
    $$-n=12k$$
    Now $$\cos(-x)=\cos x$$
    Hence, $$n=12k$$
    Where $$k$$ is a natural number.
  • Question 4
    1 / -0
    Given that $$i = \sqrt {-1}$$, find the multiplicative inverse of $$5 - i$$.
    Solution
    Let the multiplicative inverse of $$5-i$$ be $$a+bi$$ 
    Therefore we have $$(5-i)(a+bi) = 1$$
    $$\Rightarrow 5a+b +i(5b-a) = 1$$ 
    $$\Rightarrow 5a+b = 1$$ and $$5b-a = 0$$
    $$\Rightarrow a=5b$$ 
    Substitute this in $$5a+b =1$$, we get 
    $$b = \dfrac {1}{26}$$ and $$a = \dfrac {5}{16}$$
    Therefore, multiplicative inverse is $$\dfrac {(5+i)}{26}$$.
  • Question 5
    1 / -0
    Write the complete number $$- 2 - 2i$$ in polar form.
    Solution
    • given complex number is $$-2-2i$$
    • the magnitude of given number is $$2\sqrt2$$
    • So the number can be written as $$2\sqrt2(-1/\sqrt2 -i/\sqrt2)$$
    • which gives $$2\sqrt2(cos(225)+isin(225)) = 2\sqrt2 (cos\frac{5\pi}{4}+isin\frac{5\pi}{4})$$
  • Question 6
    1 / -0
    An example for twin primes is _____.
    Solution
    Two continuous prime number are called twin prime numbers.
    Only $$3$$ and $$5$$ are continuous prime numbers.
    Hence, the answer is $$3,5$$.
  • Question 7
    1 / -0
    What is the product of the complex numbers $$\left( -3i+4 \right) $$ and $$\left( 3i+4 \right) $$?
    Solution
    Consider the product of the complex numbers as shown below:
    $$(-3i+4)(3i+4)=(-3i)(3i)-3i(4)+4(3i)+4(4)$$
    $$=-9i^2-12i+12i+16$$
    $$=-9(-1)+16=9+16$$
    $$=25$$
    Hence, option C is the correct answer.
  • Question 8
    1 / -0
    Add and express in the form of a complex number $$a+bi$$
    $$(2+3i)+(-4+5i)-\dfrac {(9-3i)}{3}$$
    Solution
    Adding the given expression as follows:
    $$(2+3i)+(-4+5i)-\dfrac {(9-3i)}{3}$$
    $$=(2+3i)+(-4+5i)-(3-i)$$
    $$=2+3i-4+5i-3+i$$
    $$=-5+9i$$

  • Question 9
    1 / -0
    What is the next-highest prime number after 67?
    Solution

  • Question 10
    1 / -0
    If $$\alpha $$ and $$\beta$$ are two different complex numbers with $$|\beta|=1$$, then $$\left | \dfrac{\beta -\alpha}{1-\bar{\alpha }\beta } \right |$$ is equal to.
    Solution
    Let $$t =  \left|\cfrac { \beta -\alpha  }{ 1-\overline { \alpha  } \beta  } \right|$$ 
    Multiply the numerator and denominator with  $$\overline { \beta  } $$
    $$\Rightarrow t = \left|\cfrac { 1-\alpha \overline { \beta  }  }{ \overline { \beta  } -\overline { \alpha  }  } \right|  =  \left|\cfrac { \overline { 1- \alpha \overline { \beta  }   }  }{ \overline { \overline{\beta} -\overline{\alpha}  }  } \right|  =  \left|\cfrac { 1-\overline { \alpha  } \beta  }{ \beta -\alpha  } \right|=\cfrac{1}{t}$$ 
    $$\Rightarrow {t}^{2} = 1$$
    $$\Rightarrow t = 1$$ 
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now