Self Studies

Number Theory Test 51

Result Self Studies

Number Theory Test 51
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $${z}_{1},{z}_{2},..{z}_{n}$$ lie on the circle $$|z|=2$$ then the value of $$|{z}_{1},{z}_{2},..{z}_{n}|-4|\dfrac {1}{{z}_{1}}+\dfrac {1}{{z}_{2}}++\dfrac {1}{{z}_{n}}|=$$
    Solution

  • Question 2
    1 / -0
    What is $${ i }^{ 1000 }+{ i }^{ 1001 }+{ i }^{ 1002 }+{ i }^{ 1003 }$$ equal to (where $$i=\sqrt { -1 } $$)?
    Solution
    $$i^{1000} + i^{100} + i^{1002} + i^{1003}$$
    $$i^{2} = -1, i^{3} = -1, i^{4} = 1$$
    $$i^{1000} = (i^{4})^{250} = 1\ i^{1002} = i^{2} - i^{1000} = -1$$
    $$i^{1001} = i\cdot i^{1000} = i\ i^{1003} = i^{3}\cdot i^{1000} = -i$$
    $$\therefore i^{1000} + i^{1001} + i^{1002} + i^{1003} = 1 - 1 + i - i = 0$$
  • Question 3
    1 / -0
    If $$\sqrt{3}+i(a+ib)(c+id)$$, then $$\tan^{-1}\left(\dfrac{b}{a}\right)+\tan^{-1}\left(\dfrac{d}{c}\right)$$ has the value
    Solution

  • Question 4
    1 / -0
    If $$Z_{1},Z_{2}$$ are two complex numbers satisfying $$|\dfrac{Z_{1}-3Z_{2}}{3-Z_{1}Z_{2}}|=1|z_{1}|\neq 3$$ then $$|z_{2}|=$$
    Solution

  • Question 5
    1 / -0
    A complex number z is said to be unimodular if $$|z| =1. $$. Suppose $$z_1$$ and $$z_2$$ are complex numbers such that $$\frac{z_1-2z_2}{2-z_1\overline {z}_2}$$ is unimolecolar and $$z_2$$ is not unimodular. Then the point $$z_1$$ lies on a:
    Solution

  • Question 6
    1 / -0
    For $${ { Z }_{ 1 }=\sqrt [ 6 ]{ \dfrac { 1-i }{ 1+i\sqrt { 3 }  }  }  };\quad { { Z }_{ 2 }=\sqrt [ 6 ]{ \dfrac { 1-i }{ \sqrt { 3 } +i }  } ;\quad { { Z }_{ 3 }=\sqrt [ 6 ]{ \dfrac { 1-i }{ \sqrt { 3 } -i }  }  } }$$ which of the following holds good?
  • Question 7
    1 / -0
    The value of $$(z+3) (\overline{z} +3)$$ is eqquivalent to
    Solution
    $$(2+3)(\bar{2}+3)$$
    We know that  $$2.\bar{2}=|2|^{2}$$
                  $$(2+3).(\overline{2+3})$$
                  $$=12+31^{2}$$
  • Question 8
    1 / -0
    The imaginary part of $$(z - 1)(\cos \, \alpha - i \, \sin \, \alpha) + (z - 1)^{-1} \times (\cos \, \alpha + i \, \sin \, \alpha ) $$ is zero, if 
  • Question 9
    1 / -0
    If $$\left| z \right| \ge 5$$ then the least value $$\left| {z + \frac{2}{z}} \right|$$ is 
    Solution

  • Question 10
    1 / -0
    For a complex number $$z$$, the minimum value of $$\left | z \right |+\left | z-\cos\alpha-i\sin\alpha \right |$$ is
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now