Self Studies

Number Theory Test 54

Result Self Studies

Number Theory Test 54
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\mathrm{{z} _ { 1 }} = 10 + 6\mathrm{i} ,  \mathrm{{ z } _ { 2 }}= 4 + 6 \mathrm { i }$$ and $$\mathrm{ z}$$ is a complex number such that $$\operatorname { amp } \left( \dfrac { \mathrm { z } - \mathrm { z } _ { 1 } } { \mathrm { z } - \mathrm { z } _ { 2 } } \right) = \dfrac { \pi } { 4 }$$ , then the value of $$\left| \mathrm{z} - 7 - 9 \mathrm { i } \right|$$ is equal to
  • Question 2
    1 / -0
    The modulus of the complex number $$z$$ such that $$\left| z + 3 - i\right | = 1$$ and $$\arg{z} = \pi$$ is equal to
    Solution
    $$arg(z)=\pi$$
    Let $$z=x+iy$$
    $$arg(x+iy)=\pi$$
    $$\Rightarrow x < 0; y=0$$
    $$|z+3-i|=1$$
    $$|x+3-i|=1$$
    $$(x+3)^2+1^2=1^2$$
    $$\Rightarrow (x+3)^2=0$$
    $$x=-3$$
    $$|z|=|-3+0i|=3$$.

  • Question 3
    1 / -0
    The roots of the equation $$(3b+c-4a)x^2+(3c+a-4b)x+(3a+b-4c)= 0$$ are 
    Solution

  • Question 4
    1 / -0
    $$\frac { { z }_{ 2 }-{ 2z }_{ 2 } }{ { z }_{ 2 }-{ z }_{ 1 }{ z }_{ 2 } } $$ is unimodular then
    Solution

  • Question 5
    1 / -0
    If z is a complex number of unit modules and argument $$\theta $$, then the real part of $$\dfrac { z(1-\bar { z } ) }{ z(1+z) } $$ is :
  • Question 6
    1 / -0
    This equation $$(x-5)^{11}+(x-5^{2})^{11}+....+(x-5^{11})^{11}=0$$ has 
    Solution

  • Question 7
    1 / -0
    If z= $$\dfrac { 1 }{ { \left( 2+3i \right)  }^{ 2 } } ,\quad then\left| z \right| $$=
    Solution

  • Question 8
    1 / -0
    The complex numbers $${ z }_{ 1 },{ z }_{ 2 },{ z }_{ 2 }$$ satisfying $$\dfrac { { z }_{ 1 }+{ z }_{ 3 } }{ { z }_{ 2 }-{ z }_{ 3 } } =\dfrac { 1-i\sqrt { 3 }  }{ 2 } $$
  • Question 9
    1 / -0
    If $$z$$ is a complex number such that $$| z | = 1 , z \neq 1 ,$$ then the real part of $$\frac { z - 1 } { z + 1 }$$ is
  • Question 10
    1 / -0
    If z be any complex number such that $$|3z-2|+|3z+2|=4$$, then locus of z is
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now