Self Studies

Functions Test 2

Result Self Studies

Functions Test 2
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$f:R\rightarrow R , g:R\rightarrow R$$ and  $$f(x)= \sin x$$, $$g(x)=x^{2}$$ then $$fog(x)=$$
    Solution
    $$fog\left ( x \right )=f\left(g ( x \right ))=f (x^{2})$$
    $$=\sin x^{2}$$

  • Question 2
    1 / -0
    Find the value of $$\displaystyle \left( g\circ f \right) \left( 6 \right) $$ if $$\displaystyle g\left( x \right) ={ x }^{ 2 }+\frac { 5 }{ 2 } $$ and $$\displaystyle f\left( x \right) =\frac { x }{ 4 } -1$$.
    Solution
    $$f(x)=\dfrac {x}{4}-1$$ and $$g(x)=x^2+\dfrac {5}{2}$$
    $$\therefore f(6)=\dfrac{6}{4}-1=\dfrac{3}{2}-1=\dfrac{1}{2}$$
    $$\therefore (gof)(6)=g(\dfrac{1}{2})=\left(\dfrac{1}{2}\right)^2+\dfrac{5}{2}=\dfrac{11}{4}=2.75$$
  • Question 3
    1 / -0
    If $$f: R \rightarrow R$$ and $$g: R \rightarrow R$$ are defined by $$f(x) =3x -4$$, and  $$g(x)=2 + 3x$$, find $$(g^{-1}\, of^{-1})(5)$$.
    Solution
    Given, $$f(x)=3x-4$$
    Let $$y=3x-4$$
    $$ \Rightarrow x=\dfrac { y+4 }{ 3 } \\ \Rightarrow f^{ -1 }\left( x \right) =\dfrac { x+4 }{ 3 } $$
    Also given $$ g(x)=2+3x$$
    $$\Rightarrow  y=2+3x\\ \Rightarrow x=\dfrac { y-2 }{ 3 } \\ \Rightarrow g^{ -1 }\left( x \right) =\dfrac { x-2 }{ 3 } $$
    Thus $$g^{ -1 }\left( \text{of}^{ -1 } \right) \left( x \right) =\dfrac { \left( \dfrac { x+4 }{ 3 }  \right) -2 }{ 3 } $$
    $$ \Rightarrow g^{ -1 }\left( \text{of}^{ -1 } \right) \left( x \right) =\dfrac { x-2 }{ 9 } \\ \Rightarrow g^{ -1 }\left( \text{of}^{ -1 } \right) \left( 5 \right) =\dfrac { 5-2 }{ 9 } =\dfrac { 1 }{ 3 } $$
    So, option C is correct.
  • Question 4
    1 / -0
    If $$f: R \rightarrow R$$ and $$g: R \rightarrow R$$ are defined by $$f(x) =2x +3, g(x)=x^2 + 7$$, what are the values of $$x$$ such that $$g(f(x))=8$$?
    Solution
    Given, $$f(x)=2x+3$$
    Also given $$ g(x)={ x }^{ 2 }+7$$
    Therefore, $$ g[f(x)]={ \left( f(x) \right)  }^{ 2 }+7$$
    $$ \Rightarrow g[f(x)]={ \left( 2x+3 \right)  }^{ 2 }+7$$
    Thus $$ { \left( 2x+3 \right)  }^{ 2 }+7=8\\ \Rightarrow { \left( 2x+3 \right)  }^{ 2 }=1\\ \Rightarrow 2x+3=\pm 1\\ \Rightarrow 2x=\pm 1-3\\ \Rightarrow 2x=-2,-4\\ \Rightarrow x=-1,-2$$
    Option C is correct.
  • Question 5
    1 / -0
    If $$f(x) = \sqrt {x^{2} - 3x + 6}$$ and $$g(x) = \dfrac {156}{x +17}$$, find the value of the composite function $$g(f(4))$$.
    Solution
    $$f(x)=\sqrt { x^{ 2 }-3x+6 } ,\quad g(x)=\frac{ 156 }{ x+17 }\\ g(f(4))=\quad ?\\ f(4)=\sqrt { 10 } \\ g(f(4))=g(\sqrt { 10 } )=\quad 3.16\\ g(f(4))=7.7$$
  • Question 6
    1 / -0
    Find the correct expression for $$\displaystyle f\left( g\left( x \right)  \right) $$ given that $$\displaystyle f\left( x \right) =4x+1$$ and $$\displaystyle g\left( x \right) ={ x }^{ 2 }-2$$
    Solution
    Given, $$g(x)=x^2-2$$
    $$f(g(x))=f(x^2-2)$$
    Also given, $$f(x)=4x+1$$
    $$\therefore f(x^2-2)=4(x^2-2)+1$$
    $$\Rightarrow 4x^2-8+1$$
    $$\Rightarrow 4x^2-7$$
  • Question 7
    1 / -0

    Directions For Questions

    Let $$f: A\rightarrow B, g: B\rightarrow C$$ and $$h:C\rightarrow D$$ be three functions, then the function $$gof:A \rightarrow C$$ defined by gof(x) g[f(x)] for all $$x \epsilon A$$ is called the composition of f and g.

    ...view full instructions

    For what value of x is $$fog = gof$$ if $$f(x)=x - 2$$ and $$g(x)=x^3+3$$?
    Solution
    $$f(x)=x-2\\ g(x)={ x }^{ 3 }+3\\ f[g(x)]=g(x)-2\\ \Rightarrow fog={ x }^{ 3 }+3-2={ x }^{ 3 }+1\\ g[f(x)]={ \{ f(x)\}  }^{ 3 }+3\\ \Rightarrow gof={ (x-2) }^{ 3 }+3\\ fog=gof\\ { x }^{ 3 }+1={ (x-2) }^{ 3 }+3\\ { x }^{ 3 }-2={ (x-2) }^{ 3 }\\ { x }^{ 3 }-2={ x }^{ 3 }-8-6x(x-2)\\ { x }^{ 3 }-2={ x }^{ 3 }-8-6{ x }^{ 2 }+12x\\ \Rightarrow { x }^{ 2 }+1+2x=0\\ \Rightarrow { (x+1) }^{ 2 }=0\\ \Rightarrow x=-1$$
    So none of the above options are correct
  • Question 8
    1 / -0
    Which of the following functions is/are constant ?
    Solution
    $$f(x)=7$$ is constant function as its values do not depend on the variable $$x$$.
    Its value is $$7$$ for any value of $$x$$.
    Option $$C$$ is correct.
  • Question 9
    1 / -0
    Let $$f:\mathbb{R}\rightarrow \mathbb{R}$$ be a function such that for any irrational number $$r,$$ and any real number $$x$$ we have $$f(x)=f(x+r)$$. Then, $$f$$ is
    Solution
    A constant function is a function that has the same output value no matter what your input value is. Because of this, a constant function has the form y=k where k is a constant(a single value that doesn't change).
    So in here our input is $$x$$ i f we change our input to say $$x+r$$
    and still output does'nt change i.e.
    $$f(x)=f(x+r)$$
    it means it is a constant function,
    example:
    $$ f(x)=5=5(x)^{0} $$
    $$ f(x+r)=5(x+r)^{0}$$
    $$ f(x+r)=5\times 1 $$
    $$ f(x+r)=5=f(x) $$
  • Question 10
    1 / -0
    If $$f: A \rightarrow B$$ is a bijective function and if n(A) = 5, then n(B) is equal to 
    Solution
    We are given $$f$$ is a bijective function.

    It means $$f$$ is one-one as well as onto function.

    Therefore every element of $$B$$ is a image in $$f$$.

    $$f$$ is one-one therefore image of every element is different.

    $$\Rightarrow$$ number of elements in $$B$$ should be equal to number of elements in $$A$$.

    $$\therefore n(B)=n(A)=5$$

    Option $$(C)$$ is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now