Self Studies

Functions Test 2

Result Self Studies

Functions Test 2
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    f:RR,g:RRf:R\rightarrow R , g:R\rightarrow R and  f(x)=sinxf(x)= \sin x, g(x)=x2g(x)=x^{2} then fog(x)=fog(x)=
    Solution
    fog(x)=f(g(x))=f(x2)fog\left ( x \right )=f\left(g ( x \right ))=f (x^{2})
    =sinx2=\sin x^{2}

  • Question 2
    1 / -0
    Find the value of (gf)(6) \displaystyle \left( g\circ f \right) \left( 6 \right)  if g(x)=x2+52 \displaystyle g\left( x \right) ={ x }^{ 2 }+\frac { 5 }{ 2 }  and f(x)=x41\displaystyle f\left( x \right) =\frac { x }{ 4 } -1.
    Solution
    f(x)=x41f(x)=\dfrac {x}{4}-1 and g(x)=x2+52g(x)=x^2+\dfrac {5}{2}
    f(6)=641=321=12\therefore f(6)=\dfrac{6}{4}-1=\dfrac{3}{2}-1=\dfrac{1}{2}
    (gof)(6)=g(12)=(12)2+52=114=2.75\therefore (gof)(6)=g(\dfrac{1}{2})=\left(\dfrac{1}{2}\right)^2+\dfrac{5}{2}=\dfrac{11}{4}=2.75
  • Question 3
    1 / -0
    If f:RRf: R \rightarrow R and g:RRg: R \rightarrow R are defined by f(x)=3x4f(x) =3x -4, and  g(x)=2+3xg(x)=2 + 3x, find (g1of1)(5)(g^{-1}\, of^{-1})(5).
    Solution
    Given, f(x)=3x4f(x)=3x-4
    Let y=3x4y=3x-4
    x=y+43f1(x)=x+43 \Rightarrow x=\dfrac { y+4 }{ 3 } \\ \Rightarrow f^{ -1 }\left( x \right) =\dfrac { x+4 }{ 3 }
    Also given g(x)=2+3x g(x)=2+3x
     y=2+3xx=y23g1(x)=x23\Rightarrow  y=2+3x\\ \Rightarrow x=\dfrac { y-2 }{ 3 } \\ \Rightarrow g^{ -1 }\left( x \right) =\dfrac { x-2 }{ 3 }
    Thus g1(of1)(x)=(x+43 )23g^{ -1 }\left( \text{of}^{ -1 } \right) \left( x \right) =\dfrac { \left( \dfrac { x+4 }{ 3 }  \right) -2 }{ 3 }
    g1(of1)(x)=x29g1(of1)(5)=529=13 \Rightarrow g^{ -1 }\left( \text{of}^{ -1 } \right) \left( x \right) =\dfrac { x-2 }{ 9 } \\ \Rightarrow g^{ -1 }\left( \text{of}^{ -1 } \right) \left( 5 \right) =\dfrac { 5-2 }{ 9 } =\dfrac { 1 }{ 3 }
    So, option C is correct.
  • Question 4
    1 / -0
    If f:RRf: R \rightarrow R and g:RRg: R \rightarrow R are defined by f(x)=2x+3,g(x)=x2+7f(x) =2x +3, g(x)=x^2 + 7, what are the values of xx such that g(f(x))=8g(f(x))=8?
    Solution
    Given, f(x)=2x+3f(x)=2x+3
    Also given g(x)=x2+7 g(x)={ x }^{ 2 }+7
    Therefore, g[f(x)]=(f(x)) 2+7 g[f(x)]={ \left( f(x) \right)  }^{ 2 }+7
    g[f(x)]=(2x+3) 2+7 \Rightarrow g[f(x)]={ \left( 2x+3 \right)  }^{ 2 }+7
    Thus (2x+3) 2+7=8(2x+3) 2=12x+3=±12x=±132x=2,4x=1,2 { \left( 2x+3 \right)  }^{ 2 }+7=8\\ \Rightarrow { \left( 2x+3 \right)  }^{ 2 }=1\\ \Rightarrow 2x+3=\pm 1\\ \Rightarrow 2x=\pm 1-3\\ \Rightarrow 2x=-2,-4\\ \Rightarrow x=-1,-2
    Option C is correct.
  • Question 5
    1 / -0
    If f(x)=x23x+6f(x) = \sqrt {x^{2} - 3x + 6} and g(x)=156x+17g(x) = \dfrac {156}{x +17}, find the value of the composite function g(f(4))g(f(4)).
    Solution
    f(x)=x23x+6,g(x)=156x+17g(f(4))=?f(4)=10g(f(4))=g(10)=3.16g(f(4))=7.7f(x)=\sqrt { x^{ 2 }-3x+6 } ,\quad g(x)=\frac{ 156 }{ x+17 }\\ g(f(4))=\quad ?\\ f(4)=\sqrt { 10 } \\ g(f(4))=g(\sqrt { 10 } )=\quad 3.16\\ g(f(4))=7.7
  • Question 6
    1 / -0
    Find the correct expression for f(g(x) ) \displaystyle f\left( g\left( x \right)  \right)  given that f(x)=4x+1\displaystyle f\left( x \right) =4x+1 and g(x)=x22\displaystyle g\left( x \right) ={ x }^{ 2 }-2
    Solution
    Given, g(x)=x22g(x)=x^2-2
    f(g(x))=f(x22)f(g(x))=f(x^2-2)
    Also given, f(x)=4x+1f(x)=4x+1
    f(x22)=4(x22)+1\therefore f(x^2-2)=4(x^2-2)+1
    4x28+1\Rightarrow 4x^2-8+1
    4x27\Rightarrow 4x^2-7
  • Question 7
    1 / -0

    Directions For Questions

    Let f:AB,g:BCf: A\rightarrow B, g: B\rightarrow C and h:CDh:C\rightarrow D be three functions, then the function gof:ACgof:A \rightarrow C defined by gof(x) g[f(x)] for all xϵAx \epsilon A is called the composition of f and g.

    ...view full instructions

    For what value of x is fog=goffog = gof if f(x)=x2f(x)=x - 2 and g(x)=x3+3g(x)=x^3+3?
    Solution
    f(x)=x2g(x)=x3+3f[g(x)]=g(x)2fog=x3+32=x3+1g[f(x)]={f(x)} 3+3gof=(x2)3+3fog=gofx3+1=(x2)3+3x32=(x2)3x32=x386x(x2)x32=x386x2+12xx2+1+2x=0(x+1)2=0x=1f(x)=x-2\\ g(x)={ x }^{ 3 }+3\\ f[g(x)]=g(x)-2\\ \Rightarrow fog={ x }^{ 3 }+3-2={ x }^{ 3 }+1\\ g[f(x)]={ \{ f(x)\}  }^{ 3 }+3\\ \Rightarrow gof={ (x-2) }^{ 3 }+3\\ fog=gof\\ { x }^{ 3 }+1={ (x-2) }^{ 3 }+3\\ { x }^{ 3 }-2={ (x-2) }^{ 3 }\\ { x }^{ 3 }-2={ x }^{ 3 }-8-6x(x-2)\\ { x }^{ 3 }-2={ x }^{ 3 }-8-6{ x }^{ 2 }+12x\\ \Rightarrow { x }^{ 2 }+1+2x=0\\ \Rightarrow { (x+1) }^{ 2 }=0\\ \Rightarrow x=-1
    So none of the above options are correct
  • Question 8
    1 / -0
    Which of the following functions is/are constant ?
    Solution
    f(x)=7f(x)=7 is constant function as its values do not depend on the variable xx.
    Its value is 77 for any value of xx.
    Option CC is correct.
  • Question 9
    1 / -0
    Let f:RRf:\mathbb{R}\rightarrow \mathbb{R} be a function such that for any irrational number r,r, and any real number xx we have f(x)=f(x+r)f(x)=f(x+r). Then, ff is
    Solution
    A constant function is a function that has the same output value no matter what your input value is. Because of this, a constant function has the form y=k where k is a constant(a single value that doesn't change).
    So in here our input is xx i f we change our input to say x+rx+r
    and still output does'nt change i.e.
    f(x)=f(x+r)f(x)=f(x+r)
    it means it is a constant function,
    example:
    f(x)=5=5(x)0 f(x)=5=5(x)^{0}
    f(x+r)=5(x+r)0 f(x+r)=5(x+r)^{0}
    f(x+r)=5×1 f(x+r)=5\times 1
    f(x+r)=5=f(x) f(x+r)=5=f(x)
  • Question 10
    1 / -0
    If f:ABf: A \rightarrow B is a bijective function and if n(A) = 5, then n(B) is equal to 
    Solution
    We are given ff is a bijective function.

    It means ff is one-one as well as onto function.

    Therefore every element of BB is a image in ff.

    ff is one-one therefore image of every element is different.

    \Rightarrow number of elements in BB should be equal to number of elements in AA.

    n(B)=n(A)=5\therefore n(B)=n(A)=5

    Option (C)(C) is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now