Self Studies

Functions Test 22

Result Self Studies

Functions Test 22
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If f(x) = 2x+1 and g(x) = 3x-5 then find (fog)1(0)\left ( fog \right )^{-1}\left ( 0 \right )
    Solution
    (fog)(x)=f(g(x))=2(3x5)+1 =6x10+1=6x9 (fog)(x) = f(g(x)) = 2(3x-5) + 1  = 6x-10 + 1 = 6x-9

    Let (fog)(x)=y (fog)(x)= y
    Then, to find (fog)1(x) (fog)^{-1} (x), we find x x in terms of yy

    So, 6x9=y 6x-9 = y
    =>x=y+96 => x = \dfrac {y+9}{6}

    =>(fog)1(x)=y+96 => (fog)^{-1} (x)= \dfrac {y+9}{6}

    =>(fog)1(0)=0+96=32 => (fog)^{-1} (0)= \dfrac {0+9}{6} = \dfrac {3}{2}
  • Question 2
    1 / -0
    If X = {2,3,5,7,11} and Y = {4,6,8,9,10} then find the number of one-one functions from X to Y
    Solution
    Both sets X and Y have the same number of elements.

    When two sets have same number of n n elements, then the number of one to one functions from one set to the other is n! n!

    So, number of one to one functions from X to Y =5!=5×4×3×2×1=120 = 5 ! = 5 \times 4 \times 3 \times 2 \times 1 = 120
  • Question 3
    1 / -0
    If f(x)=(1x3)13\displaystyle f\left ( x \right )=\left ( 1-x^{3} \right )^{\frac{1}{3}}, then find fof(x)fof(x)
    Solution
    Given, f(x)=(1x3)13\displaystyle f\left ( x \right )=\left ( 1-x^{3} \right )^{\frac{1}{3}}
    Therefore,  fof(x)=f[f(x)]\displaystyle fof\left ( x \right )=f\left [ f\left ( x \right ) \right ]
    =f((1x3)13)=[1{(1x3)13}3]13\displaystyle =f\left ( \left ( 1-x^{3} \right )^{\frac{1}{3}} \right )=\left [ 1-\left \{ \left ( 1-x^{3} \right )^{\frac{1}{3}} \right \}^{3} \right ]^{\frac{1}{3}}
    =[1(1x)3]13=(x3)13=x\displaystyle =\left [ 1-\left ( 1-x \right )^{3} \right ]^{\frac{1}{3}}=\left ( x^{3} \right )^{\frac{1}{3}}=x
  • Question 4
    1 / -0
    Find (fg)(3)\left( f\circ g \right) \left( 3 \right) when f(x)=7x6f\left( x \right) =7x-6 and g(x)=5x27x6g\left( x \right) =5{ x }^{ 2 }-7x-6.
    Solution
    We have, f(x)=7x6f(x)=7x-6 and g(x)=5x27x6g(x)=5x^2-7x-6
    Then,(fg)(x)(f\circ g)(x)
    =f(g(x))=f(g(x))
    =f(5x27x6)=f(5x^2-7x-6)
    =7(5x27x6)6=7(5x^2-7x-6)-6
    =35x249x426=35x^2-49x-42-6
    =35x249x48=35x^2-49x-48
    (fg)(3)\therefore (f\circ g)(3)
    =35(3)249(3)48=35(3)^2-49(3)-48
    =31514748=315-147-48
    =120=120
    So, D\text{D} is the correct option.
  • Question 5
    1 / -0
    If f is a constant function and f(100)=100  then f(2007)=_____
    Solution
    A constant function f(x) f(x) will have the result as a constant for any value of x x

    So, if f(100)=100 f(100) = 100
    then f(2007) f(2007 ) is also 100 100
  • Question 6
    1 / -0
    If f(x) + f(1-x) = 10 then the value of f(110)+f(210)+.........+f(910)\displaystyle f\left ( \frac{1}{10} \right )+f\left ( \frac{2}{10} \right )+.........+f\left ( \frac{9}{10} \right )
    Solution
    f(110) +f(210)  + f(310)  +f(410)  +f(510)  +f(610)  +f(710)  +f(810) + f(910)   f(\dfrac {1}{10})  + f(\dfrac {2}{10})   +  f(\dfrac {3}{10})   + f(\dfrac {4}{10})   + f(\dfrac {5}{10})   + f(\dfrac {6}{10})   + f(\dfrac {7}{10})   + f(\dfrac {8}{10})  +  f(\dfrac {9}{10})  

     =[f(110) +f(910)]+[f(210)  + +f(810)]+[f(310)  + +f(710)]+[f(410)  +f(610)] +f(510)  ]   = [f(\dfrac {1}{10})  + f(\dfrac {9}{10}) ] + [ f(\dfrac {2}{10})   +  + f(\dfrac {8}{10}) ] + [ f(\dfrac {3}{10})   +  + f(\dfrac {7}{10}) ] + [ f(\dfrac {4}{10})   + f(\dfrac {6}{10}) ]  + f(\dfrac {5}{10})   ]  

    =10+10+10+10+5=45 = 10 + 10 + 10 + 10 + 5 = 45
  • Question 7
    1 / -0
    If f(x)=2x1f (x) = 2x - 1 and g(x)=3x+2g (x) = 3x + 2, then find (fog)(x)(fog) (x) :
    Solution
    fog(x)=2(3x+2)1=6x+41=6x+3=3(2x+1)fog(x)=2(3x+2)-1=6x+4-1=6x+3=3(2x+1)
  • Question 8
    1 / -0
    The domain of the function f(x)= log |x - 1| is ........
    Solution
    Log is defined for all positive numbers but undefined for 00. Hence xx can attain any value other than those which cause expression (x1)(x-1) to be null, that is, xx can not be 11.
  • Question 9
    1 / -0
    If f = {(1,3) (2,1) (3,4) (4,2)} and g = {(1,2) (2,3) (3,4) (4,1)} then find n(fog)
    Solution
    we can find n(fog) n(fog) by finding the range of the domain of ff
    In (1,3) (1,3) as the range 3 3 is mapped to 4 4 in gg , the ordered pair here for fogfog   is (1,4) (1,4)
    In (2,1) (2,1) as the range 1 1 is mapped to 22 in gg , the ordered pair here for fogfog   is (2,2) (2,2)
    In (3,4) (3,4) as the range 4 4 is mapped to 1 1 in gg , the ordered pair here for fogfog   is (3,1) (3,1)
    In (4,2) (4,2) as the range 2 2 is mapped to 3 3 in gg , the ordered pair here for fogfog   is (4,3) (4,3)

    As we have 4 4 ordered pairs for fog fog , we have n(fog)=4 n(fog) = 4

  • Question 10
    1 / -0
    If f(x)=(pxn)1/n,p>0f(x)\, =\, (p\, -\, x^n)^{1/n},\, p\, >\, 0 and nn is a positive integer, then f(f(x))=f(f(x)) =
    Solution
    Given, f(x)=(pxn)1nf(x)=(p-x^{n})^{\dfrac{1}{n}}

    f(f(x))=(p((pxn)1n)n)1n\therefore f(f(x))=(p-((p-x^{n})^{\dfrac{1}{n}})^{n})^{\dfrac{1}{n}}

    =(p(pxn))1n=(p-(p-x^{n}))^{\dfrac{1}{n}}

    =(xn)1n=(x^{n})^{\dfrac{1}{n}}

    =x=x
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now