Self Studies

Functions Test 28

Result Self Studies

Functions Test 28
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$A = \left \{ 1 , 3 , 5 , 7 \right \} $$ and $$ B = \left \{ 1 , 2 , 3, 4 , 5 , 6 , 7 , 8 \right \} $$ then the number of one-to-one functions from $$A$$ into $$B$$ is 
    Solution
    Given, $$A = \{1, 3, 5, 7\}$$
    and $$B =\{1, 2, 3, 4, 5, 6, 7, 8\}$$
    Here, $$n(A) = 4$$ and $$n(B) = 8$$
    Thus number of one-one function from $$A$$ into $$B$$
    $$= \,^8 P_4 = 8.7.6.5 = 1680$$
  • Question 2
    1 / -0
    If $$f(x)=3x+5$$ and $$g(x)={ x }^{ 2 }-1$$, then $$\left( f\circ g \right) $$ $$({ x }^{ 2 }-1)$$ is equal to
    Solution
    $$f(x)=3x+5$$
    and $$g(x)={x}^{2}-1$$
    $$\therefore f\circ g\left( { x }^{ 2 }-1 \right) =f[g\left( { x }^{ 2 }-1 \right) ]=f\left[ { \left( { x }^{ 2 }-1 \right)  }^{ 2 }-1 \right] $$
    $$=3\left( { x }^{ 4 }-2{ x }^{ 2 } \right) +5=3{ x }^{ 4 }-6{ x }^{ 2 }+5$$
  • Question 3
    1 / -0
    If $$g(x)={ x }^{ 2 }+x-2$$ and $$\cfrac { 1 }{ 2 } (g\circ f)(x)=2{ x }^{ 2 }-5x+2$$, then $$f(x)$$ is
    Solution
    $$\cfrac { 1 }{ 2 } \left( g\circ f \right) (x)=2{ x }^{ 2 }-5x+2$$

    $$\Rightarrow \cfrac { 1 }{ 2 } g\left[ f(x) \right] =2{ x }^{ 2 }-5x+2\quad $$

    $$\left[ { \left\{ f(x) \right\}  }^{ 2 }+\left\{ f(x) \right\} -2 \right] =2\left[ 2{ x }^{ 2 }-5x+2 \right] \quad \left[ \because g(x)={ x }^{ 2 }+x-2 \right] $$

    $$\Rightarrow f{ \left( x \right)  }^{ 2 }+f(x)-\left( 4{ x }^{ 2 }-10x+6 \right) =0$$  ....represents quadratic equation

    We have a formula for solving quadratic equation $$ax^2+bx+c=0$$ is

    $$x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}$$

    $$\therefore f(x)=\cfrac { -1\pm \sqrt { 1+4\left( 4{ x }^{ 2 }-10x+6 \right)  }  }{ 2 } $$

    $$=\cfrac { -1\pm(4x-5) }{ 2 } =2x-3$$ or $$2-2x$$
  • Question 4
    1 / -0
    If $$(ax^2 + bx + c)y +a'x^2+b'x+c=0$$, then the condition that x may be a rational function of y is
    Solution

  • Question 5
    1 / -0
    Let $$f(x) = |x - 2|$$, where $$x$$ is a real number. Which one of the following is true?
    Solution
    From the graph of the function it can be observed clearly that $$f$$ is not one-one function.
    So option $$D$$ is correct.
  • Question 6
    1 / -0
    If $$f\left( x \right) $$ and $$g\left( x \right) $$ are two functions with $$g\left( x \right) =x-\dfrac { 1 }{ x } $$ and $$f\circ g\left( x \right) ={ x }^{ 3 }-\dfrac { 1 }{ { x }^{ 3 } } $$, then $$f^{ ' }\left( x \right) $$ is equal to
    Solution
    $$f\circ g\left( x \right) ={ x }^{ 3 }-\dfrac { 1 }{ { x }^{ 3 } } $$
    Writing $${ x }^{ 3 }-\dfrac { 1 }{ { x }^{ 3 } } $$ using $${ \left( a-b \right)  }^{ 3 }={ a }^{ 3 }-{ b }^{ 3 }-3ab\left( a-b \right) $$, we have
    $${ \left( x-\dfrac { 1 }{ x }  \right)  }^{ 3 }={ x }^{ 3 }-\dfrac { 1 }{ { x }^{ 3 } } -3x\cdot \dfrac { 1 }{ x } \left( x-\dfrac { 1 }{ x }  \right) $$
    $$\Rightarrow { x }^{ 3 }-\dfrac { 1 }{ { x }^{ 3 } } ={ \left( x-\dfrac { 1 }{ x }  \right)  }^{ 3 }+3\left( x-\dfrac { 1 }{ x }  \right) $$
    We have,
    $$f\left( g\left( x \right)  \right) ={ x }^{ 3 }-\dfrac { 1 }{ { x }^{ 3 } } ={ \left( x-\dfrac { 1 }{ x }  \right)  }^{ 3 }+3\left( x-\dfrac { 1 }{ x }  \right) $$
    As $$g\left( x \right) =x-\dfrac { 1 }{ x } $$, this yields
    $$f\left( x-\dfrac { 1 }{ x }  \right) ={ \left( x-\dfrac { 1 }{ x }  \right)  }^{ 3 }+3\left( x-\dfrac { 1 }{ x }  \right) $$
    On putting $$x-\dfrac { 1 }{ x } =t$$, we get
    $$f\left( t \right) ={ t }^{ 3 }+3t$$
    Thus, $$f\left( x \right) ={ x }^{ 3 }+3x$$
    and $$f^{ ' }\left( x \right) =3{ x }^{ 2 }+3$$
  • Question 7
    1 / -0
    If $$f(x)=\left| x \right| ,x\in R$$, then
    Solution

  • Question 8
    1 / -0
    $$f,g:R\rightarrow R$$ are functions such that $$f(x)=3x-\sin { \left( \cfrac { \pi x }{ 2 }  \right)  } ,g(x)={ x }^{ 3 }+2x-\sin { \left( \cfrac { \pi x }{ 2 }  \right)  } $$
    The value of $$\cfrac { d }{ dx } { f }^{ -1 }{ \left( { g }^{ -1 }(x) \right)  }_{ x=12 }$$ is equal to
    Solution
    Given that,
    $$g:R \to R$$

    $$f\left( x \right) = 3x - \sin \left( {\dfrac{{\pi x}}{2}} \right)$$

    $$g\left( x \right) = {x^3} + 2x - \sin \left( {\dfrac{{\pi x}}{2}} \right)$$

    $$\therefore \dfrac{{d{f^{ - 1}}}}{{dx}}{\left( {g'\left( x \right)} \right)_{x = 12}} = \dfrac{2}{{30 + x}}$$

    Hence, the option $$(A)$$ is correct.
  • Question 9
    1 / -0
    The graph of a constant function $$f(x)=k$$ is?
    Solution
    A graph of a constant function is always a horizontal line.
    Horizontal line is a line which is parallel to $$x$$-axis.

  • Question 10
    1 / -0
    If $$f,g,h$$ are three functions from a set of positive real numbers into itself satisfying the condition,
    $$f(x) \cdot g(x)=h \sqrt{x^2 + y^2}$$ such that $$x,y \epsilon (0,\infty)$$.then, $$\dfrac{f(x)}{g(x)}$$ is a?
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now