Self Studies

Functions Test ...

TIME LEFT -
  • Question 1
    1 / -0

    If f(g(x))=5x+2 and g(x)=8x then f(x)=

  • Question 2
    1 / -0

    if ff is a bijective function such that f(x)=λx+μax+βf(x)=\dfrac {\lambda x+\mu}{ax+\beta} and  if f1(x)=f(x)f^{-1}(x)=f(x), then

  • Question 3
    1 / -0

    If f(x)=(1x)f\left( x \right) = (1 - x) , x[3,3]x \in \left[ { - 3,3} \right] , then the domain of f(f(x))f\left( {f\left( x \right)} \right) is

  • Question 4
    1 / -0

    If f(x)=x1x2f(x)=\frac{x}{\sqrt{1-x^{2}}} and g(x) = f(x)=x1+x2f(x)=\frac{x}{\sqrt{1+x^{2}}} , then (fog)(x) =

  • Question 5
    1 / -0

    If f(x)=(axn)1/n f ( x ) = \left( a - x ^ { n } \right) ^ { 1 / n } where a>0 a > 0 and } nn is a positive integer then(fof)(x)( f o f ) ( x ) is

  • Question 6
    1 / -0

    The function f(x)=logx2xf ( x ) = \sqrt { \log _ { x ^ { 2 } } x } is defined for xx:

  • Question 7
    1 / -0

    if f(x)=log(1+x1x)f\left( x \right) = \log \left( {\dfrac{{1 +x}}{{1 - x}}} \right) and g(x)=3x+x31+3x2g\left( x \right) = \dfrac{{3x + {x^3}}}{{1 + 3{x^2}}} then (f(g(x))))\left( {f(g(x)))} \right) is equal to

  • Question 8
    1 / -0

    If f:RR,f(x)=2x1f:R \rightarrow R, f(x)=2x-1 and g;RR,g(x)=x2+2g; R \rightarrow R, g(x)=x^{2}+2, then (gof)(x)(gof)(x) equals-

  • Question 9
    1 / -0

    Let g(x)=1+x[x]g(x)=1+x-[x]\quad and f(x)={1ifx<00ifx=01ifx>0f(x)=\begin{cases} -1\quad if\quad x<0 \\ 0\quad \quad if\quad x=0 \\ 1\quad \quad if\quad x>0 \end{cases} , then x,fog(x)\forall \:x,fog(x) equals 

  • Question 10
    1 / -0

    f:ccf:c \to c is defined as f(x)=ax+bcx+d,bd0f(x) = \dfrac{{ax + b}}{{cx + d}},bd \ne 0 then ff is a constant function when,

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now