Self Studies

Functions Test 34

Result Self Studies

Functions Test 34
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If f(x)=(axn)1/nf ( x ) = \left( a - x ^ { n } \right) ^ { 1 / n } where a>0a > 0 and nn is a positive integer then (fof)(x)( f o f ) ( x ) is 
    Solution
    f(n)=(axn)1/nf(n)= (a-x^{n})^{1/n}
    (fof)(n)=(a((axn)1/n)n)1/n(fof)^{(n)}=(a-((a-x^{n})^{1/n})^{n})^{1/n}
    =(aa+xn)1/n=(a-a+x^{n})^{1/n}
    fof(n)=xfof(n)=x

  • Question 2
    1 / -0
    f:RRf:R \rightarrow R such that f(x)=n(x+x2+1)f(x)=\ell n(x+\sqrt {x^{2}+1}). Another function g(x)g(x) is defined such that gof(x)=x  x Rgof(x)=x\ \forall\ x \in\ R. Then g(2)g(2) is -
    Solution
    f(x)=ln(x+x2+1)f(x)= ln (x+ \sqrt{x^{2}+1})

    g(x)=g(f(x))g(x)= g(f(x))                        g(2)=? g(2)=?

    ln (x+x2+1)=y(x+ \sqrt{x^{2}+1})=y

    x2+1=eyx\sqrt{x^2+1}= e^y-{x}

    x2+1=e2y2eyx+x2x^{2}+1= e^{2y}-2e^{y}x+x^{2}

    e2y2eyx1=oe^{2y}-2e^{y}x-1=o \Rightarrow

    x=e2y12eyx =\dfrac{e^{2y}-1}{2e^{y}}

    =(eyey)2=\dfrac{(e^{y}- e^{-y})}{2}

    g(x)=eyey2g(2)=e2e22\therefore g(x) = \dfrac{e{^y}- e^{-y}}{2} \Rightarrow g (2)= \dfrac{e^{2}-e^{-2}}{2}

  • Question 3
    1 / -0
    Let f:RRf:R\rightarrow R is a function satisfying f(2x)=f(2+x)f(2-x)=f(2+x) and f(20x)=f(x)xRf(20-x)=f(x)\forall x\in R
    If f(0)=5f(0)=5 then the minimum possible no. of values of xx satisfying f(x)=5f(x)=5 for x=[0.,70]x=[0.,70], is
    Solution
    Given,   f(2x)=f(2+x)..(i)f(2 - x) = f(2 + x) .. (i)
    f(x)\therefore f(x) is symmetric about x=2x = 2
    f(20x)=f(x)..(ii)f(20 - x) = f(x) ..(ii)
    xx+10x \rightarrow x + 10
    f(10x)=f(10+x)f(10 - x) = f(10 + x)
    f(x)f(x) is symmetric about x=10x = 10
    xx+2x \rightarrow x + 2
    f(18x)=f(x+2)..(ii)f(18 - x) = f(x + 2) .. (ii)
    f(2x)=f(18x)f(2 - x) = f(18 - x)
    xxx \rightarrow -x
    f(2+x)=f(18+x)f(2 + x) = f(18 + x)
    x+2x\therefore x + 2 \rightarrow x
    f(x)=f(x+16)\therefore f(x) = f(x + 16)
    f(x)f(x) has period = 1616
    f(x)=5,x[0,170]f(x) = 5 , \, x \in [0, 170]
    put x=2x = 2 in (i) f(0)=f(4)f(0) = f(4)
    put x=4x = 4 in (ii) f(4)=f(16)f(4) = f(16)
    when x[0,16]f(x)x \in [0, 16] \rightarrow f(x) has two solution 
    when x[0,160]x \in [0, 160] has 2020 solution.
    When xin[0,170]x in [0, 170] has 21'21' solution

  • Question 4
    1 / -0
    Let f(x)=x2f\left( x \right) = {x^2} and g(x)=2xg\left( x \right) = {2^x}. Then the solution of the equation fog(x)=gof(x)fog\left( x \right) = gof\left( x \right) is
    Solution
    f(x)=x2f\left(x\right)={x}^{2}

    fg(x)=f(2x)=(2x)2=22xf{g\left(x\right)}=f{\left({2}^{x}\right)}={\left({2}^{x}\right)}^{2}={2}^{2x}

    g(x)=2xg\left(x\right)={2}^{x}

    gf(x)=g(x2)=2x2g{f\left(x\right)}=g{\left({x}^{2}\right)}={2}^{{x}^{2}}

    Given:fg(x)=gf(x)f{g\left(x\right)}=g{f\left(x\right)}

    22x=2x2\Rightarrow\,{2}^{2x}={2}^{{x}^{2}}

    Since bases are same we can equate the powers
    2x=x2\Rightarrow\,2x={x}^{2}
    x22x=0\Rightarrow\,{x}^{2}-2x=0
    x(x2)=0\Rightarrow\,x\left(x-2\right)=0
    x=0,2\Rightarrow\,x=0,2

    When x=0,fg(x)=gf(x)20=20=1x=0,\,f{g\left(x\right)}=g{f\left(x\right)}\Rightarrow\,{2}^{0}={2}^{0}=1
    When x=2,fg(x)=gf(x)22×2=22216=16x=2,\,f{g\left(x\right)}=g{f\left(x\right)}\Rightarrow\,{2}^{2\times 2}={2}^{{2}^{2}}\Rightarrow\,16=16
    Hence x={0,2}x=\left\{0,2\right\}
  • Question 5
    1 / -0
    All values of a for which f : R R \to R defined by f(x)= x3+ax2+3x+100{x^3} + a{x^2} + 3x + 100 is a one one functions, are
    Solution
    f(x)=3x2+2ax+3f ^ { \prime } ( x ) = 3 x ^ { 2 } + 2 a x + 3
    f(x)=0f ^ { \prime } ( x ) = 0  and f ( x ) > 0  f(x)<0f ^ { \prime } ( x ) < 0
    3x2+2ax+3 =0 3 x ^ { 2 } + 2 a x + 3  = 0
    x= 2a±4a2366 x =  \dfrac { - 2 a \pm \sqrt { 4 a ^ { 2 } - 36 } } { 6 }
    4a2<36 4 a ^ { 2 } < 36
    a(3,3) a \in ( - 3,3 )
  • Question 6
    1 / -0
    If f(x)=sin1(sinx)+cos1(sinx) and ϕ(x)=f(f(f(x)))f ( x ) = \sin ^ { - 1 } ( \sin x ) + \cos ^ { - 1 } ( \sin x ) \text { and } \phi ( x ) = f ( f ( f ( x ) ) ) then ϕ(x)\phi ^ { \prime } ( x )
    Solution
    f(x)=sin1(sinx ) +cos1(sinx ) =π 2[sin1θ +cos1θ =π 2 ]f(x)=\sin ^{ -1 }{ \left( \sin { x }  \right)  } +\cos ^{ -1 }{ \left( \sin { x }  \right)  } =\cfrac { \pi  }{ 2 } \left[ \because \sin ^{ -1 }{ \theta  } +\cos ^{ -1 }{ \theta  } =\cfrac { \pi  }{ 2 }  \right]
    f(f(x))=f(π 2)=π 2f(f(x))=f\left(\cfrac { \pi  }{ 2 }\right )=\cfrac { \pi  }{ 2 }
    ϕ(x)=f(f(f(x)))=f(π 2)=π 2\phi (x)=f(f(f(x)))=f\left(\cfrac { \pi  }{ 2 }\right )=\cfrac { \pi  }{ 2 }
    ϕ(x)=π 2\phi (x)=\cfrac { \pi  }{ 2 }
    ϕ(x)=0\phi '(x)=0
  • Question 7
    1 / -0
    if f(x)=3x+2f\left( x \right) = 3x + 2 , g(x)=x2+1g\left( x \right) = {x^2} + 1,then the values of (fog)(x21)\left( {f_og} \right)\left( {{x^2} - 1} \right)
    Solution
    f(x)=3x+2f\left(x\right)=3x+2

    g(x)=x2+1g\left(x\right)={x}^{2}+1
    f.g(x)=f(x2+1)f.g\left(x\right)=f\left({x}^{2}+1\right)
    f.g(x)=3(x2+1)+2=3x2+5f.g\left(x\right)=3\left({x}^{2}+1\right)+2=3{x}^{2}+5

    f.g(x)=3x2+5f.g\left(x\right)=3{x}^{2}+5
    f.g(x21)=3(x21)2+5f.g\left({x}^{2}-1\right)=3{\left({x}^{2}-1\right)}^{2}+5

    =3(x42x2+1)+5=3\left({x}^{4}-2{x}^{2}+1\right)+5

    =3x46x2+3+5=3{x}^{4}-6{x}^{2}+3+5

    =3x46x2+8=3{x}^{4}-6{x}^{2}+8
  • Question 8
    1 / -0
    Let A = {1,2,3,4,5} and B={1,2,3,4,5}. If f:ABf:A\rightarrow B is an one-one function and f(x)=xf(x)=x holds only for one value of  xϵ{1,2,3,4,5},x\epsilon \{ 1,2,3,4,5\} , then the number of such possible function is  
    Solution

  • Question 9
    1 / -0
    The domain function log10(5xx24)\sqrt{log_{10}(\frac{5x-x^{2}}{4})} is 
    Solution

  • Question 10
    1 / -0
    f(x)=x22x3f(x) = \mid |x|^2 - 2 |x| -3 \mid is non differentiable at kk points in its domain , the value of kk is
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now