Self Studies

Functions Test ...

TIME LEFT -
  • Question 1
    1 / -0

    Let f(x)=cos1(3x1)f(x)=\cos^{-1}(3x-1). Then, dom (f)=?(f)=?

  • Question 2
    1 / -0

    Let f(x)=cosxf(x)=\sqrt{\cos x}. Then, dom (f)=?(f)=?

  • Question 3
    1 / -0

    Let f(x)=log(1x)+x21f(x)=log(1-x)+\sqrt{x^2-1}. Then, dom(f)=?(f)=?

  • Question 4
    1 / -0

    Directions For Questions

    f(x)={x1,1x0x2,0x1f(x) = \begin{cases} x-1, -1 \leq x \leq 0\\x^2, 0\leq x\leq 1 \end{cases} and g(x) = sin x, consider the functions.
    h1(x)=f(g(x)) and h2(x)=f(g(x))h_1(x) = f(|g(x)|) \space and \space h_2(x) = |f(g(x))|.

    ...view full instructions

    Which of the following is not true about h2(x)h_2(x)

  • Question 5
    1 / -0

    If f(x)=2x3,g(x)=x3x+4 f(x)=\dfrac{2}{x-3}, g(x)=\dfrac{x-3}{x+4}  and  h(x)=2(2x+1)x2+x12 h(x)=-\dfrac{2(2 x+1)}{x^{2}+x-12} then  limx3[f(x)+g(x)+h(x)] \lim _{x \rightarrow 3}[f(x)+g(x)+h(x)]  is

  • Question 6
    1 / -0

    For  a real number y, let [y] denotes the greatest integer less than or equal to y. Then the function
    f(x)=tan(π[xπ ])1+[x]2 f(x)= \dfrac{tan(\pi \left[ x-\pi  \right ])}{1+[x]^2} is

  • Question 7
    1 / -0

    Directions For Questions

    Consider the function f(x)=f(x1x)=1+x  x ϵ R0,1 and g(x)=2f(x)x+1f(x) = f\left(\dfrac{x - 1}{x}\right) = 1 + x \space \forall \space x \space \epsilon \space R - {0, 1}\space and \space g(x) = 2f(x) - x + 1

    ...view full instructions

    The number of roots of the equation g(x) = 1 is

  • Question 8
    1 / -0

    The domain of the function f(x)=ln(x1)(x2+4x+4 )f(x) = \sqrt{\ln_{(|x| - 1)} \left (x^{2} + 4x +4 \right )} is 

  • Question 9
    1 / -0

    If f:XYf : X \rightarrow Y, where  XX and YY are sets containing natural numbers, f(x)=x+5x+2f(x) = \frac{x + 5} {x + 2} then the number of elements in the domain and range of $$f(x) are respectively

  • Question 10
    1 / -0

    The domain of definition of the function f(x)f(x) given by the equation 2x+2y=22^x + 2^y = 2 is                                                                  (IIT-JEE, 2000)

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now