Self Studies

Functions Test 9

Result Self Studies

Functions Test 9
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The domain of $${f}({x})=\sqrt{2-\log_{3}(x-1)}$$  is
    Solution
    $$f$$ is defined only if term under root is positive.
    $$\Rightarrow 2-\log_{3}(x-1)\geq 0$$
    $$\log_{3}(x-1)\leq 2$$
    $$(x-1)\leq 9$$
    $$x\leq 10$$
    $$\log (x-1)$$ is defined if $$x-1>0 \Rightarrow   x>1$$
    $$\therefore$$ Domain of $$f$$ is $$(1,10]$$.
  • Question 2
    1 / -0
    The domain of the function defined by $$ \mathrm{f}({x})=^{(7-x)}P_{(x-3)}$$ is
    Solution
    $$f$$ is defined only if $$7-x\geq x-3$$ and $$7-x\geq 0$$.
    $$\Rightarrow x\leq 5$$  and  $$x\geq 3$$
    $$\therefore$$ $$f$$ is defined at $$x=\left \{ 3,4,5 \right \}$$
  • Question 3
    1 / -0
    Let $$S$$ be set of all rational numbers. The functions $$f:R\rightarrow R,\ g:R\rightarrow R$$ are defined as 
    $$f(x)=\begin{cases}
    0, & x \in S \\ 
    1, & x \notin S
    \end{cases}$$
    $$g(x)=\begin{cases}
    -1 & x\in S \\ 
     0 & x\notin S
    \end{cases}$$
    then, $$(fog) (\pi)+(gof)(e)=$$
    Solution
    $$f(x)=\begin{cases}
    0, & x \text{ is rational} \\
    1, & x \text{ is irrational}
    \end{cases}$$
    $$g(x)=\begin{cases}
    -1 & x\text { is rational} \\
     0& x\text { is irrational }
    \end{cases}$$
    $$fog(\pi )=f(g(\pi ))=f(0)=0$$
    so $$gof(e)=g(f(e))=g(1)=-1$$
    $$\therefore fog(\pi )+gof(e)=-1$$
  • Question 4
    1 / -0
    If $$n\geq 1$$ is any integer, $$\mathrm{d}(n)$$ denotes the number of positive factors of $$n$$, then for any prime number $$\mathrm{p},\ \mathrm{d}(\mathrm{d}(\mathrm{d}(\mathrm{p}^{7})))=$$
    Solution
    For a number being $$p^{n}$$ the total number of positive factors excluding $$1$$ and the number itself will be $$n-1$$.
    Therefore total number of positive factors will be $$n-1+2$$
    $$=n+1$$
    Hence for $$p^{7}$$ we will have $$8$$ factors.
    Now for $$8=2^{3}$$.
    Hence $$8$$ will have $$4$$ factors.
    Now $$4=2^{2}$$, hence the number of factors will be $$3$$.
  • Question 5
    1 / -0
    The domain of $$f(x) =\left ( {\sin }^{ -1 }x+{ \text{cosec} }^{ -1 }x\right )$$ is
  • Question 6
    1 / -0
    lf $$f:[-6,6]\rightarrow \mathbb{R}$$ is defined by $$f(x)=x^{2}-3$$ for $$x\in \mathbb{R}$$ then
    $$(fofof)(-1)+(fofof)(0)+(fofof)(1)=$$
    Solution
    $$fofof(-1)=fof(-2)=f(1)=-2$$
    $$fofof(1)=fof(-2)=f(1)=-2$$
    $$fofof(0)=fof(-3)=f(0)=33$$
    $$\therefore fofof(-1)+fofof(1)+fofof(0)=29$$
    $$=32-3$$
    $$=(4\sqrt{2})^{2}-3$$
    $$\Rightarrow f(4\sqrt{2})=(4\sqrt{2})^{2}-3$$

  • Question 7
    1 / -0
    lf $$f$$ : $$R\rightarrow R$$ is defined by
    $$f(x)=\left\{\begin{array}{l}x+4 & x<-4\\3x+2 & -4\leq x<4\\x-4 & x\geq 4\end{array}\right.$$
    then the correct matching of list I to List II is. 
    List - IList - II
    $$\mathrm{A}) f(-5)+f(-4)=$$$$\mathrm{i}) 14$$
    $$\mathrm{B}) f(|f(-8)|)=$$ii $$) 4$$
    $$\mathrm{C}) f(f(-7)+f(3))=$$$$\mathrm{i}\mathrm{i}\mathrm{i})-11$$
    $$\mathrm{D}) f(f(f(f(0)))+1=$$$$\mathrm{i}\mathrm{v})-1$$
    v) $$1$$
    vi) $$0$$
    Solution
    $$f(-5)=-5+4=-1  ;  f(-4)=3(-4)+2=-10$$
    $$\therefore f(-5)+f(4)=-11$$
    $$f(|f(-8)|)=f((-8+4))=f(4)=4-4=0$$
    $$f(f(-7)) tf(3) = f(-7+4)+3(3)+2$$
    $$=3(-3)+2+3(3)+2$$
    $$=4$$
    $$f(f(f(f(0))))+1=f(f(f(2)))+1=f(f(8))+1$$
    $$=f(4)+1=0+1=1$$

  • Question 8
    1 / -0
    The domain of $$\mathrm{f}(\mathrm{x})=\log_{\mathrm{x}}(9-\mathrm{x}^{2})$$ is
    Solution
    For $$f$$ to be defined $$x>0$$  and  $$x\neq 1$$
    $$9-x^{2}\geq 0  \Rightarrow   x\in (-3,3)$$
    $$\therefore x\in  (0,1)\cup (1,3)$$
  • Question 9
    1 / -0
    The domain of $$\displaystyle f(x)=\sqrt{\log\left(\frac{1}{|\sin x|}\right)}$$ is
    Solution
    $$\displaystyle \frac{1}{|\sin x|}\geq 1 $$
    $$\therefore \log$$ is always defined except at which denominator is zero,i.e, when  $$\sin x=0  \Rightarrow   x=n\pi$$
    $$\therefore$$ $$f$$ is defined an $$R-n\pi \  \  \forall n$$.
  • Question 10
    1 / -0

    lf $$g(f(x)) =|\sin \mathrm{x}|,f(g(x)) =(\sin\sqrt{\mathrm{x}})^{2}$$, then
    Solution
    $$g(f(x))=|\sin x|=\sqrt{\sin^{2}x}$$        .......(i)
    $$f(g(x))=\sin^{2}\sqrt{x}$$           .......(ii)

    Comparing $$i$$ and $$ii$$

    $$\Rightarrow$$$$g(f(x))=|\sin x|=\sqrt{\sin^{2}x}$$

    $$\Rightarrow$$$$g(\sin^{2}x)=\sqrt{\sin^{2}x}=g(f(x))$$

    And
    $$\Rightarrow$$$$f(g(x))=\sin^{2}\sqrt{x}$$

    $$\Rightarrow$$$$f(\sqrt{x})=\sin^{2}\sqrt{x}=f(g(x))$$

    Therefore
    $$\Rightarrow$$$$g(x)=\sqrt{x}$$

    $$\Rightarrow$$$$f(x)=\sin^{2}x$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now