Self Studies

Functions Test 9

Result Self Studies

Functions Test 9
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The domain of f(x)=2log3(x1){f}({x})=\sqrt{2-\log_{3}(x-1)}  is
    Solution
    ff is defined only if term under root is positive.
    2log3(x1)0\Rightarrow 2-\log_{3}(x-1)\geq 0
    log3(x1)2\log_{3}(x-1)\leq 2
    (x1)9(x-1)\leq 9
    x10x\leq 10
    log(x1)\log (x-1) is defined if x1>0  x>1x-1>0 \Rightarrow   x>1
    \therefore Domain of ff is (1,10](1,10].
  • Question 2
    1 / -0
    The domain of the function defined by f(x)=(7x)P(x3) \mathrm{f}({x})=^{(7-x)}P_{(x-3)} is
    Solution
    ff is defined only if 7xx37-x\geq x-3 and 7x07-x\geq 0.
    x5\Rightarrow x\leq 5  and  x3x\geq 3
    \therefore ff is defined at x={3,4,5}x=\left \{ 3,4,5 \right \}
  • Question 3
    1 / -0
    Let SS be set of all rational numbers. The functions f:RR, g:RRf:R\rightarrow R,\ g:R\rightarrow R are defined as 
    $$f(x)=\begin{cases}
    0, & x \in S \\ 
    1, & x \notin S
    \end{cases}$$
    $$g(x)=\begin{cases}
    -1 & x\in S \\ 
     0 & x\notin S
    \end{cases}$$
    then, (fog)(π)+(gof)(e)=(fog) (\pi)+(gof)(e)=
    Solution
    $$f(x)=\begin{cases}
    0, & x \text{ is rational} \\
    1, & x \text{ is irrational}
    \end{cases}$$
    $$g(x)=\begin{cases}
    -1 & x\text { is rational} \\
     0& x\text { is irrational }
    \end{cases}$$
    fog(π)=f(g(π))=f(0)=0fog(\pi )=f(g(\pi ))=f(0)=0
    so gof(e)=g(f(e))=g(1)=1gof(e)=g(f(e))=g(1)=-1
    fog(π)+gof(e)=1\therefore fog(\pi )+gof(e)=-1
  • Question 4
    1 / -0
    If n1n\geq 1 is any integer, d(n)\mathrm{d}(n) denotes the number of positive factors of nn, then for any prime number p, d(d(d(p7)))=\mathrm{p},\ \mathrm{d}(\mathrm{d}(\mathrm{d}(\mathrm{p}^{7})))=
    Solution
    For a number being pnp^{n} the total number of positive factors excluding 11 and the number itself will be n1n-1.
    Therefore total number of positive factors will be n1+2n-1+2
    =n+1=n+1
    Hence for p7p^{7} we will have 88 factors.
    Now for 8=238=2^{3}.
    Hence 88 will have 44 factors.
    Now 4=224=2^{2}, hence the number of factors will be 33.
  • Question 5
    1 / -0
    The domain of f(x)=(sin1x+cosec1x)f(x) =\left ( {\sin }^{ -1 }x+{ \text{cosec} }^{ -1 }x\right ) is
  • Question 6
    1 / -0
    lf f:[6,6]Rf:[-6,6]\rightarrow \mathbb{R} is defined by f(x)=x23f(x)=x^{2}-3 for xRx\in \mathbb{R} then
    (fofof)(1)+(fofof)(0)+(fofof)(1)=(fofof)(-1)+(fofof)(0)+(fofof)(1)=
    Solution
    fofof(1)=fof(2)=f(1)=2fofof(-1)=fof(-2)=f(1)=-2
    fofof(1)=fof(2)=f(1)=2fofof(1)=fof(-2)=f(1)=-2
    fofof(0)=fof(3)=f(0)=33fofof(0)=fof(-3)=f(0)=33
    fofof(1)+fofof(1)+fofof(0)=29\therefore fofof(-1)+fofof(1)+fofof(0)=29
    =323=32-3
    =(42)23=(4\sqrt{2})^{2}-3
    f(42)=(42)23\Rightarrow f(4\sqrt{2})=(4\sqrt{2})^{2}-3

  • Question 7
    1 / -0
    lf ff : RRR\rightarrow R is defined by
    f(x)={x+4x<43x+24x<4x4x4f(x)=\left\{\begin{array}{l}x+4 & x<-4\\3x+2 & -4\leq x<4\\x-4 & x\geq 4\end{array}\right.
    then the correct matching of list I to List II is. 
    List - IList - II
    A)f(5)+f(4)=\mathrm{A}) f(-5)+f(-4)=i)14\mathrm{i}) 14
    B)f(f(8))=\mathrm{B}) f(|f(-8)|)=ii )4) 4
    C)f(f(7)+f(3))=\mathrm{C}) f(f(-7)+f(3))=iii)11\mathrm{i}\mathrm{i}\mathrm{i})-11
    D)f(f(f(f(0)))+1=\mathrm{D}) f(f(f(f(0)))+1=iv)1\mathrm{i}\mathrm{v})-1
    v) 11
    vi) 00
    Solution
    f(5)=5+4=1 ; f(4)=3(4)+2=10f(-5)=-5+4=-1  ;  f(-4)=3(-4)+2=-10
    f(5)+f(4)=11\therefore f(-5)+f(4)=-11
    f(f(8))=f((8+4))=f(4)=44=0f(|f(-8)|)=f((-8+4))=f(4)=4-4=0
    f(f(7))tf(3)=f(7+4)+3(3)+2f(f(-7)) tf(3) = f(-7+4)+3(3)+2
    =3(3)+2+3(3)+2=3(-3)+2+3(3)+2
    =4=4
    f(f(f(f(0))))+1=f(f(f(2)))+1=f(f(8))+1f(f(f(f(0))))+1=f(f(f(2)))+1=f(f(8))+1
    =f(4)+1=0+1=1=f(4)+1=0+1=1

  • Question 8
    1 / -0
    The domain of f(x)=logx(9x2)\mathrm{f}(\mathrm{x})=\log_{\mathrm{x}}(9-\mathrm{x}^{2}) is
    Solution
    For ff to be defined x>0x>0  and  x1x\neq 1
    9x20   x(3,3)9-x^{2}\geq 0  \Rightarrow   x\in (-3,3)
    x (0,1)(1,3)\therefore x\in  (0,1)\cup (1,3)
  • Question 9
    1 / -0
    The domain of f(x)=log(1sinx)\displaystyle f(x)=\sqrt{\log\left(\frac{1}{|\sin x|}\right)} is
    Solution
    1sinx1\displaystyle \frac{1}{|\sin x|}\geq 1
    log\therefore \log is always defined except at which denominator is zero,i.e, when  sinx=0   x=nπ\sin x=0  \Rightarrow   x=n\pi
    \therefore ff is defined an Rnπ    nR-n\pi \  \  \forall n.
  • Question 10
    1 / -0

    lf g(f(x))=sinx,f(g(x))=(sinx)2g(f(x)) =|\sin \mathrm{x}|,f(g(x)) =(\sin\sqrt{\mathrm{x}})^{2}, then
    Solution
    g(f(x))=sinx=sin2xg(f(x))=|\sin x|=\sqrt{\sin^{2}x}        .......(i)
    f(g(x))=sin2xf(g(x))=\sin^{2}\sqrt{x}           .......(ii)

    Comparing ii and iiii

    \Rightarrowg(f(x))=sinx=sin2xg(f(x))=|\sin x|=\sqrt{\sin^{2}x}

    \Rightarrowg(sin2x)=sin2x=g(f(x))g(\sin^{2}x)=\sqrt{\sin^{2}x}=g(f(x))

    And
    \Rightarrowf(g(x))=sin2xf(g(x))=\sin^{2}\sqrt{x}

    \Rightarrowf(x)=sin2x=f(g(x))f(\sqrt{x})=\sin^{2}\sqrt{x}=f(g(x))

    Therefore
    \Rightarrowg(x)=xg(x)=\sqrt{x}

    \Rightarrowf(x)=sin2xf(x)=\sin^{2}x
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now