Self Studies

Tangents and its Equations Test 10

Result Self Studies

Tangents and its Equations Test 10
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The equation of the tangent to the curve y=exy=e^{-|x|} at the point where the curve cuts the line x=1x=1 is
    Solution
    y=exy=e^{-x}
    y=1exexy'=\dfrac{-1e^{-x}}{e^{-x}}
    y=e1    at   x=1y'=-e^{-1}  \  \ at   \ \ x=1
    y=e1   at    x=1y=e^{-1}   \ \ at  \ \  x=1
    (ye1)=e1(x1)(y-e^{-1})=-e^{-1}(x-1)
    x+ey=2x+ey=2
  • Question 2
    1 / -0
    The equation of the normal at xx == 2a2a for the curve y=8a34a2+x2\displaystyle y=\frac{8a^{3}}{4a^{2}+x^{2}} is
    Solution
    Equation of normal at x=2ax=2a for y=8a34a2+x2y=\dfrac { 8{ a }^{ 3 } }{ 4{ a }^{ 2 }+{ x }^{ 2 } }
    x=2a\Rightarrow x=2a
    y=8a34a2+(2a)2=a\Rightarrow y=\dfrac { 8{ a }^{ 3 } }{ 4{ a }^{ 2 }+{ (2a) }^{ 2 } } =a
    y=dydx=8a3(2x)(4a2+x2) 2,x=2ay=8a3×2×2a(4a2+4a2) 2y'=\dfrac { dy }{ dx } =\dfrac { -8{ a }^{ 3 }(2x) }{ { \left( 4{ a }^{ 2 }+{ x }^{ 2 } \right)  }^{ 2 } } ,x=2a\Rightarrow y'=\dfrac { -8{ a }^{ 3 }\times 2\times 2a }{ { \left( 4{ a }^{ 2 }+4{ a }^{ 2 } \right)  }^{ 2 } }
    =8a3×4a64a4=\dfrac { -8{ a }^{ 3 }\times 4a }{ 64{ a }^{ 4 } }
    =12=-\dfrac { 1 }{ 2 }
    Slope of normal =1y=2=\dfrac { -1 }{ y' } =2
    ya=2(x2a)\Rightarrow y-a=2(x-2a)
    2x4a=ya2x-4a=y-a
    2xy=3a\therefore 2x-y=3a is a equation of normal.
  • Question 3
    1 / -0
    Equation of the tangent line to y=bexay=be^{\frac{-x}{a}} where it crosses y-axis is
    Solution
    y=bexa at x=0y=b e^{\frac{-x}{a}}  at  x=0
    y=by=b
    y=bexay'=\dfrac{-b e^{-x}}{a}
    y=ba   (at   x=0)y'=\dfrac{-b }{a} \ \   (at \ \  x=0)
    (yb)=ba(x0)(y-b )=\dfrac{-b }{a}(x-0)
    xa+yb=1\dfrac{x}{a}+\dfrac{y}{b }=1
  • Question 4
    1 / -0
    The portion of the tangent to xy =a2=a^{2} at any point on it between the axes is
    Solution
    Let xy tangent at (a,a)(a,a)

    xy+y=0xy'+y=0

    y1=yxy^{1}=\cfrac{-y}{x}

    y=1y'=-1

    (ya)=1(xa)(y-a)=-1(x-a)

    Bisected by that point.

    y   at   B=yxy' \ \  at  \ \ B =\dfrac{-y}{x}

    =ay2ty2=\dfrac{-ay^{2}}{ty^{2}}

    (ya2t)=a2t2(xt)(y-\dfrac{a^{2}}{t})=\dfrac{-a^{2}}{t^{2}}(x-t)

    x=0, y=2a2tx=0 ,  y=\dfrac{2a^{2}}{t}

    y=0,x=2ty=0, x=2t

    (t,a2t)(t,\dfrac{a^{2}}{t}) to the mid point of (2+10) and (0,2a2t)(0,\dfrac{2a^{2}}{t}).
    H.P.
  • Question 5
    1 / -0
    Area of the triangle formed by the normal to the curve x=esinyx=e^{\sin y} at (1, 0) with the coordinate axes is
    Solution

  • Question 6
    1 / -0
    The distance of the origin from the normal to the curve  y=e2x+x2y=e^{2x}+x^{2} at x=0x=0 is
    Solution
    y=2e2x+2xy'=2e^{2x}+2x
    y=1y=1   at  x=0x=0
    y=2y'=2

    mm of normal =12=\dfrac{-1}{2}

    (y1)=12(x0)(y-1)=\dfrac{-1}{2}(x-0)

    x+2y2=0x+2y-2=0

    distance from origin

    d=x1+2y1212+22  (x1y1)=(0,0)d=\left |\dfrac{x_{1}+2y_{1}-2}{\sqrt{1^{2}+2^{2}}} \right |   (x_{1}y_{1})=(0,0)

    d=25d=\dfrac{2}{\sqrt{5}}
  • Question 7
    1 / -0
    The arrangment of the slopes of the normals to the curve  y=elog(cosx)y=e^{\log(cosx)} in the ascending order at the points given below.
    A)x=π6, B)x=7π4, C)x=11π6, D)x=π3A) \displaystyle x=\frac{\pi}{6},  B) \displaystyle x=\frac{7\pi}{4},  C)x=\frac{11\pi}{6},  D)x=\frac{\pi}{3}
    Solution
    We have,  y=elogcosx=(cosx)loge[alogbc=clogba]=cosxy = e^{\log \cos x} =(\cos x)^{\log e}[\because a^{\log_bc} =c^{\log_ba}] =\cos x
    dydx=sinx=m\Rightarrow \dfrac{dy}{dx} =-\sin x=m(say)
    Thus slope of normal to the given curve at any point is,
    m=1m=1sinxm'=- \dfrac{1}{m}=\dfrac{1}{\sin x}
    Now,  mπ6=2,m7π4=2,mπ6=2,mπ6=32m'_{\frac{\pi}{6}}=2, m'_{\frac{7\pi}{4}}=-\sqrt{2}, m'_{\frac{\pi}{6}}=-2,m'_{\frac{\pi}{6}}=\dfrac{\sqrt{3}}{2}
    Clearly ascending order is, C,B,D,AC,B,D,A
    Note: Given function is not defined where cosx<0\cos x<0
  • Question 8
    1 / -0
    lf the normal at the point p(θ)p(\theta) of the curve x23+y23=a23x^{\tfrac{2}{3}}+y^{\tfrac{2}{3}}=a^{\tfrac{2}{3}} passes through the origin then
    Solution
    x=a cos3θx=a\ \cos^{3}\theta
    y=a sin3θy=a\ \sin^{3}\theta
    y1=a 3 sin2θ cos θa 3 cos2θcos θy^{1}=\dfrac{a\ 3\ \sin^{2}\theta\ \cos\ \theta}{a\ 3\ \cos^{2}\theta-\cos\ \theta}
    sin θcos θ(ya sin3θ)=cos θsin θ(xa cos3 θ)\dfrac{-\sin\ \theta}{\cos\ \theta}(y-a\ \sin^{3}\theta)=\dfrac{\cos\ \theta}{\sin\ \theta}(x-a\ \cos^{3}\ \theta)
    (0,0)(0, 0) satisfies the eqn^{n}
    sin4 θ=cos4 θ\sin^{4}\ \theta=\cos^{4}\ \theta
    θ=π4\theta=\dfrac {\pi}4
  • Question 9
    1 / -0
    The equations of the tangents at the origin to the curve  y2=x2(1+x)y^{2}=x^{2}(1+x) are
    Solution
    y=+x2+x3y=+_-\sqrt{x^{2}+x^{3}}
    y=+2x+3x22x2+x3y'=+_-\dfrac{2x+3x^{2}}{2\sqrt{x^{2}+x^{3}}}
    y=+2+3x21+xy'=+_-\dfrac{2+3x}{2\sqrt{1+x}}
    yx=0=+1y'|_{x=0}=+_-1
    y=+xy=+_-x
  • Question 10
    1 / -0
    The equation of the common normal at the point of contact of the curves x2=yx^{2}=y and x2+y28y=0x^{2}+y^{2}-8y=0
    Solution
    y2+y8y=0y^{2}+y-8y=0
    y=0. y=7y=0.\ y=7
    x=0, x=7x=0,\ x=\sqrt{7}
    y1=2x=m1y^{1}=2x=m_{1}
    yy14y1=xyy^{1}-4y^{1}=-x
    y1=x4y=m2y^{1}=\frac{x}{4-y}=m_{2}
    m1, m2 at (0,0)m_{1},\ m_{2}\ at\ (0,0)
    m1=m2=0m_{1}=m_{2}=0
    Slope of the normal =α=\alpha
    x=0\therefore x=0 is the required line
    cl. y-axis
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now