Self Studies

Tangents and its Equations Test 10

Result Self Studies

Tangents and its Equations Test 10
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The equation of the tangent to the curve $$y=e^{-|x|}$$ at the point where the curve cuts the line $$x=1$$ is
    Solution
    $$y=e^{-x}$$
    $$y'=\dfrac{-1e^{-x}}{e^{-x}}$$
    $$y'=-e^{-1}  \  \ at   \ \ x=1$$
    $$y=e^{-1}   \ \ at  \ \  x=1$$
    $$(y-e^{-1})=-e^{-1}(x-1)$$
    $$x+ey=2$$
  • Question 2
    1 / -0
    The equation of the normal at $$x$$ $$=$$ $$2a$$ for the curve $$\displaystyle y=\frac{8a^{3}}{4a^{2}+x^{2}}$$ is
    Solution
    Equation of normal at $$x=2a$$ for $$y=\dfrac { 8{ a }^{ 3 } }{ 4{ a }^{ 2 }+{ x }^{ 2 } } $$
    $$\Rightarrow x=2a$$
    $$\Rightarrow y=\dfrac { 8{ a }^{ 3 } }{ 4{ a }^{ 2 }+{ (2a) }^{ 2 } } =a$$
    $$y'=\dfrac { dy }{ dx } =\dfrac { -8{ a }^{ 3 }(2x) }{ { \left( 4{ a }^{ 2 }+{ x }^{ 2 } \right)  }^{ 2 } } ,x=2a\Rightarrow y'=\dfrac { -8{ a }^{ 3 }\times 2\times 2a }{ { \left( 4{ a }^{ 2 }+4{ a }^{ 2 } \right)  }^{ 2 } } $$
    $$=\dfrac { -8{ a }^{ 3 }\times 4a }{ 64{ a }^{ 4 } } $$
    $$=-\dfrac { 1 }{ 2 } $$
    Slope of normal $$=\dfrac { -1 }{ y' } =2$$
    $$\Rightarrow y-a=2(x-2a)$$
    $$2x-4a=y-a$$
    $$\therefore 2x-y=3a$$ is a equation of normal.
  • Question 3
    1 / -0
    Equation of the tangent line to $$y=be^{\frac{-x}{a}}$$ where it crosses y-axis is
    Solution
    $$y=b e^{\frac{-x}{a}}  at  x=0$$
    $$y=b $$
    $$y'=\dfrac{-b e^{-x}}{a}$$
    $$y'=\dfrac{-b }{a} \ \   (at \ \  x=0)$$
    $$(y-b )=\dfrac{-b }{a}(x-0)$$
    $$\dfrac{x}{a}+\dfrac{y}{b }=1$$
  • Question 4
    1 / -0
    The portion of the tangent to xy $$=a^{2}$$ at any point on it between the axes is
    Solution
    Let xy tangent at $$(a,a)$$

    $$xy'+y=0$$

    $$y^{1}=\cfrac{-y}{x}$$

    $$y'=-1$$

    $$(y-a)=-1(x-a)$$

    Bisected by that point.

    $$y' \ \  at  \ \ B =\dfrac{-y}{x}$$

    $$=\dfrac{-ay^{2}}{ty^{2}}$$

    $$(y-\dfrac{a^{2}}{t})=\dfrac{-a^{2}}{t^{2}}(x-t)$$

    $$x=0 ,  y=\dfrac{2a^{2}}{t}$$

    $$y=0, x=2t$$

    $$(t,\dfrac{a^{2}}{t})$$ to the mid point of (2+10) and $$(0,\dfrac{2a^{2}}{t})$$.
    H.P.
  • Question 5
    1 / -0
    Area of the triangle formed by the normal to the curve $$x=e^{\sin y}$$ at (1, 0) with the coordinate axes is
    Solution

  • Question 6
    1 / -0
    The distance of the origin from the normal to the curve  $$y=e^{2x}+x^{2}$$ at $$x=0$$ is
    Solution
    $$y'=2e^{2x}+2x$$
    $$y=1$$   at  $$x=0$$
    $$y'=2$$

    $$m$$ of normal $$=\dfrac{-1}{2}$$

    $$(y-1)=\dfrac{-1}{2}(x-0)$$

    $$x+2y-2=0$$

    distance from origin

    $$d=\left |\dfrac{x_{1}+2y_{1}-2}{\sqrt{1^{2}+2^{2}}} \right |   (x_{1}y_{1})=(0,0)$$

    $$d=\dfrac{2}{\sqrt{5}}$$
  • Question 7
    1 / -0
    The arrangment of the slopes of the normals to the curve  $$y=e^{\log(cosx)}$$ in the ascending order at the points given below.
    $$A) \displaystyle x=\frac{\pi}{6},  B) \displaystyle x=\frac{7\pi}{4},  C)x=\frac{11\pi}{6},  D)x=\frac{\pi}{3}$$
    Solution
    We have,  $$y = e^{\log \cos x} =(\cos x)^{\log e}[\because a^{\log_bc} =c^{\log_ba}] =\cos x$$
    $$\Rightarrow \dfrac{dy}{dx} =-\sin x=m$$(say)
    Thus slope of normal to the given curve at any point is,
    $$m'=- \dfrac{1}{m}=\dfrac{1}{\sin x}$$
    Now,  $$m'_{\frac{\pi}{6}}=2, m'_{\frac{7\pi}{4}}=-\sqrt{2}, m'_{\frac{\pi}{6}}=-2,m'_{\frac{\pi}{6}}=\dfrac{\sqrt{3}}{2}$$
    Clearly ascending order is, $$C,B,D,A$$
    Note: Given function is not defined where $$\cos x<0$$
  • Question 8
    1 / -0
    lf the normal at the point $$p(\theta)$$ of the curve $$x^{\tfrac{2}{3}}+y^{\tfrac{2}{3}}=a^{\tfrac{2}{3}}$$ passes through the origin then
    Solution
    $$x=a\ \cos^{3}\theta$$
    $$y=a\ \sin^{3}\theta$$
    $$y^{1}=\dfrac{a\ 3\ \sin^{2}\theta\ \cos\ \theta}{a\ 3\ \cos^{2}\theta-\cos\ \theta}$$
    $$\dfrac{-\sin\ \theta}{\cos\ \theta}(y-a\ \sin^{3}\theta)=\dfrac{\cos\ \theta}{\sin\ \theta}(x-a\ \cos^{3}\ \theta)$$
    $$(0, 0)$$ satisfies the eq$$^{n}$$
    $$\sin^{4}\ \theta=\cos^{4}\ \theta$$
    $$\theta=\dfrac {\pi}4$$
  • Question 9
    1 / -0
    The equations of the tangents at the origin to the curve  $$y^{2}=x^{2}(1+x)$$ are
    Solution
    $$y=+_-\sqrt{x^{2}+x^{3}}$$
    $$y'=+_-\dfrac{2x+3x^{2}}{2\sqrt{x^{2}+x^{3}}}$$
    $$y'=+_-\dfrac{2+3x}{2\sqrt{1+x}}$$
    $$y'|_{x=0}=+_-1$$
    $$y=+_-x$$
  • Question 10
    1 / -0
    The equation of the common normal at the point of contact of the curves $$x^{2}=y$$ and $$x^{2}+y^{2}-8y=0$$
    Solution
    $$y^{2}+y-8y=0$$
    $$y=0.\ y=7$$
    $$x=0,\ x=\sqrt{7}$$
    $$y^{1}=2x=m_{1}$$
    $$yy^{1}-4y^{1}=-x$$
    $$y^{1}=\frac{x}{4-y}=m_{2}$$
    $$m_{1},\ m_{2}\ at\ (0,0)$$
    $$m_{1}=m_{2}=0$$
    Slope of the normal $$=\alpha$$
    $$\therefore x=0$$ is the required line
    cl. y-axis
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now