Self Studies

Tangents and its Equations Test 20

Result Self Studies

Tangents and its Equations Test 20
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A and B are points $$(-2,0)$$ and $$(1,3)$$ on the curve $$\displaystyle y=4-x^{2}$$. If the tangent at P on the curve be parallel to chord AB, then co-ordinates of point P are 
    Solution
    Given equation of curve $$\displaystyle y=4-x^{2}$$     ...(i)
    $$\dfrac{dy}{dx}=-2x$$

    Given points $$A(-2,0)$$ and $$(1,3)$$
    Slope of AB $$=\dfrac{3}{3}=1$$

    $$\Rightarrow -2x=1$$
    $$\Rightarrow x=\dfrac{-1}{2}$$

    So, by equation (i), we get
    $$y=\dfrac{15}{4}$$
    Hence, the point is $$(-\dfrac{1}{2},\dfrac{15}{4})$$
  • Question 2
    1 / -0
    The parametric equations of a curve are given by $$\displaystyle x= \sec ^{2}t, y= \cot t.$$ Tangent at $$\displaystyle P \,t=\dfrac { \pi }4$$ meets the curve again at Q; then $$\displaystyle PQ=? $$
    Solution
    $$\displaystyle x= \sec ^{2}t, y= \cot t.$$ 
    Given $$t=\dfrac{\pi}{4}$$
    $$\Rightarrow x=\sec^2 (\dfrac{\pi}{4}), y=\cot \dfrac{\pi}{4}$$
    $$\Rightarrow x=2, y=1$$
    So, the point P is $$(2,1)$$

    Now, $$\dfrac{dx}{dt}=2\sec t \sec t\tan t$$
     $$\dfrac{dy}{dt}=-cosec^2 t$$
    $$\Rightarrow \dfrac{dy}{dx}=-\dfrac{1}{2}\cot^3 t$$
    Slope of tangent at P is $$-\dfrac{1}{2}$$

    Equation of tangent at P is 
    $$y-1=-\dfrac{1}{2}(x-2)$$
    $$\Rightarrow x+2y=4$$          .....(1)

    Since, $$\sec^2 t -\tan^2 t=1$$
    $$\Rightarrow x-\dfrac{1}{y^2}=1$$      .....(2)

    Solving (1) and (2), we get
    $$\displaystyle \left ( 4-2y \right )y^{2}-1= y^{2}.$$ 
    $$\Rightarrow \displaystyle y= 1, 1,-\frac{1}{2}$$
    $$\Rightarrow x=2, 5$$    (by (1))

    $$\displaystyle \therefore Q is\left ( 5,-\frac{1}{2} \right ) $$
    $$\therefore PQ= \sqrt{\dfrac{45}{4}}= \dfrac{3\sqrt{5}}{2}.$$ 
    The values of $$y=1,1$$ correspond to point P.
  • Question 3
    1 / -0
    The line $$\dfrac xa+\dfrac yb=1$$ touches the curve $$\displaystyle y=be^{-x/a}$$ at the point
    Solution
    Simplifying the equation of the line we get 
    $$bx+ay=ab$$
    $$ay=-bx+ab$$
    Or 
    $$y=\dfrac{-b}{a}.x+b$$
    Hence
    $$\dfrac{dy}{dx}=\dfrac{-b}{a}$$
    Or 
    $$-\dfrac{b}{a}.e^{-x/a}.=\dfrac{-b}{a}$$
    Or 
    $$e^{-x/a}=1$$
    Or 
    $$x=0$$
    Hence
    $$y=b$$.
    Therefore the point is $$(0,b)$$
  • Question 4
    1 / -0
    The curve $$\displaystyle y-e^{xy}+x=0$$ has a vertical tangent at the point 
    Solution
    $$\dfrac{dy}{dx}-e^{xy}[x\dfrac{dy}{dx}+y]+1=0$$
    Or 
    $$\dfrac{dy}{dx}[1-x.e^{xy}]+1-y.e^{xy}=0$$
    Or 
    $$\dfrac{dy}{dx}=\dfrac{-(1-y.e^{xy})}{1-x.e^{xy}}$$
    Now 
    $$1-xe^{xy}=0$$ since the slope of the tangent is $$90^{0}$$.
    Hence
    $$xe^{xy}=1$$
    Or 
    $$x(x+y)=1$$
    Or 
    $$x^{2}+xy=1$$
    Or 
    $$y=\dfrac{1-x^{2}}{x}$$
    Or 
    $$y=\dfrac{1}{x}-x$$ ...(i)
    Considering $$y=0$$,
    $$x^{2}=1$$
    $$x=\pm1$$.
    Hence we get 2 points $$(1,0)$$ and $$(-1,0)$$.
    Out of these 2, only $$(1,0)$$ lies on the curve.
    Hence the required point is $$(1,0)$$.
  • Question 5
    1 / -0
    If $$\displaystyle x\cos \alpha +y\sin \alpha =p$$ touches $$\displaystyle x^{2}+a^{2}y^{2}=a^{2},$$ then
    Solution
    Solving for y, we have 
    $$\displaystyle y=\dfrac { p }{ \sin { \alpha  }  } -x\cot { \alpha  } $$
    Putting this value in $${ x }^{ 2 }+{ a }^{ 2 }{ y }^{ 2 }={ a }^{ 2 }$$, we have
    $$\displaystyle { x }^{ 2 }+{ a }^{ 2 }{ \left( \dfrac { p }{ \sin { \alpha  }  } -x\cot { \alpha  }  \right)  }^{ 2 }={ a }^{ 2 }$$

    $$\displaystyle \Rightarrow { x }^{ 2 }\left( 1+{ a }^{ 2 }\cot ^{ 2 }{ \alpha  }  \right) -\dfrac { 2a^{ 2 }xp\cot { \alpha  }  }{ \sin { \alpha  }  } +\dfrac { { a }^{ 2 }{ p }^{ 2 } }{ \sin ^{ 2 }{ \alpha  }  } -{ a }^{ 2 }=0$$

    The discriminant of this equation must be zero. So
    $$\displaystyle { a }^{ 4 }\dfrac { { p }^{ 2 }\cot ^{ 2 }{ \alpha  }  }{ \sin ^{ 2 }{ \alpha  }  } =\left( 1+{ a }^{ 2 }\cot ^{ 2 }{ \alpha  }  \right) \left( \dfrac { { a }^{ 2 }{ p }^{ 2 } }{ \sin ^{ 2 }{ \alpha  }  } -{ a }^{ 2 } \right) \\ \Rightarrow { a }^{ 2 }{ p }^{ 2 }\cot ^{ 2 }{ \alpha  } =\left( 1+{ a }^{ 2 }\cot ^{ 2 }{ \alpha  }  \right) \left( { p }^{ 2 }-\sin ^{ 2 }{ \alpha  }  \right) \\ \Rightarrow { p }^{ 2 }\left( { a }^{ 2 }\cot ^{ 2 }{ \alpha  } -1-{ a }^{ 2 }\cot ^{ 2 }{ \alpha  }  \right) =\sin ^{ 2 }{ \alpha  } -{ a }^{ 2 }\cos ^{ 2 }{ \alpha  } \\ \Rightarrow { p }^{ 2 }={ a }^{ 2 }\cos ^{ 2 }{ \alpha  } +\sin ^{ 2 }{ \alpha  } $$
  • Question 6
    1 / -0
    The point of intersection of the tangents drawn to the curve $$\displaystyle x^{2}y=1-y$$ at the points where it is met by the curve $$\displaystyle xy=1-y$$ is given by
    Solution
    Intersection of $${ x }^{ 2 }y=1-y$$ are $$xy=1-y$$
    are given by $${ x }^{ 2 }y=xy$$.
    Since $$y\neq 0$$ on any of two curves
    So we must have $$x=0,1$$.
    Thus the curve intersect at $$\displaystyle \left( 0,1 \right) ;\left( 0,\dfrac { 1 }{ 2 }  \right) $$

    Now differentiating $${ x }^{ 2 }y=1-y$$. we have
    $$\displaystyle \dfrac { dy }{ dx } =\dfrac { 2xy }{ 1+{ x }^{ 2 } } $$
    Thus for $$\left( x,y \right) =\left( 0,1 \right) $$ $$\displaystyle \dfrac { dy }{ dx } =0$$
    And for $$\displaystyle \left( x,y \right) =\left( 0,\dfrac { 1 }{ 2 }  \right) $$$$\displaystyle \dfrac { dy }{ dx } =-\dfrac { 1 }{ 2 } $$
    Thus the equation of tangent are $$Y=1$$ and $$\displaystyle Y-\dfrac { 1 }{ 2 } =\left( -\dfrac { 1 }{ 2 }  \right) \left( X-1 \right) $$
    Their intersection is given by $$\left( 0,1 \right) $$
  • Question 7
    1 / -0
    The coordinates of the point $$M(x, y)$$ on $$\displaystyle y= e^{-\left | x \right |}$$ so that the area formed by the coordinates axes and the tangent at $$M$$ is greatest, are
    Solution
    The curve of f(x) is symmetrical about y axis.
    Let the point of contact of the tangent be $$(a,e^{-a})$$
    Therefore
    $$\dfrac{dy}{dx}_{(a,e^{-a})}=-e^{-a}$$
    Hence the equation of the tangent will be 
    $$y-e^{-a}=-e^{-a}(x-a)$$

    $$y-e^{-a}=-e^{-a}x+ae^{-a}$$

    $$y+e^{-a}x=e^{-a}(1+a)$$

    $$\dfrac{y}{e^{-a}(1+a)}+\dfrac{x}{1+a}=1$$
    Hence the area formed by the tangent and the coordinate axes will be
    $$=\dfrac{(x-intercept)(y-intercept)}{2}$$

    $$A=\dfrac{e^{-a}(1+a)^{2}}{2}$$

    Differentiating with respect to a, we get
    $$\dfrac{dA}{da}=\dfrac{1}{2}[2(1+a)e^{-a}-(1+a)^{2}e^{-a}]$$

    $$=\dfrac{(1+a)e^{-a}}{2}[2-(1+a)]$$

    $$=\dfrac{(1+a)e^{-a}}{2}(1-a)$$
    $$=0$$
    Hence
    $$a=\pm1$$
    Thus we get the points as $$(1,e^{-1})$$ and $$(-1,e^{-1})$$.
  • Question 8
    1 / -0
    The value of m for which the area of the triangle included between the axes and any tangent to the $$\displaystyle x^{m}y= b^{m}$$ curve is constant, is
    Solution
    Given, $$y =b^mx^{-m}$$
    $$y' = -b^mx^{-(m+1)}$$
    At any point $$(x1,y1)$$
    Equation of tangent is given by
    $$\cfrac{y-y1}{x-x1} = -b^mx1^{-(m+1)}$$
    Y intercept $$= -m$$
    X intercept $$= (m-1)\times \dfrac 1m$$
    Area bounded $$=  \cfrac{1}{2}\cfrac{(m-1)x1}{m} \times m$$
    For area to be constant, $$m =1$$
  • Question 9
    1 / -0
    If the tangent at any point on the curve $$\displaystyle x^{4}+y^{4}= a^{4}$$ cuts off intercepts p and q on the coordinate axes, the value of $$\displaystyle p^{-\tfrac 43}+q^{-\tfrac 43}$$ is
    Solution

    Let 
    $$x=a\sqrt{\cos \theta}$$
    $$y=a\sqrt{\sin \theta}$$
    Hence
    $$\dfrac{dy}{dx}$$

    $$=-\dfrac{\cos \theta.\sqrt{\cos \theta}}{\sin \theta.\sqrt{\sin \theta}}$$
    $$=\cot\theta^{\dfrac{3}{2}}$$.
    Hence equation of tangent will be 
    $$y-a\sqrt{\sin \theta}=-\dfrac{\cos \theta.\sqrt{\cos \theta}}{\sin \theta.\sqrt{\sin \theta}}(x-a\sqrt{\cos \theta})$$
    $$\sin \theta.\sqrt{\sin \theta}y-a\sin ^{2}\theta=-\cos \theta\sqrt{\cos \theta}x+a\cos ^{2}\theta$$
    $$(\sin \theta)^{\dfrac{3}{2}}.y+(\cos \theta)^{\dfrac{3}{2}}x=a$$
    Hence the intercepts are 
    $$Q=\dfrac{a}{(\sin \theta)^{\dfrac{3}{2}}}$$ and $$P=\dfrac{a}{(\cos \theta)^{\dfrac{3}{2}}}$$
    Hence
    $$Q^{\dfrac{-4}{3}}+P^{\dfrac{-4}{3}}$$
    $$=a^{-\dfrac{4}{3}}[\cos ^{2}\theta+\sin ^{2}\theta]$$
    $$=a^{-\dfrac{4}{3}}$$.

  • Question 10
    1 / -0
    The equation of the tangent to the curve $$\displaystyle y= \left ( 2x-1 \right )e^{2\left ( 1-x \right )}$$ at the point of its maximum is
    Solution
    Given, $$y=(2x-1)e ^{2(1-x)}$$
    $$\therefore y'\left( x \right) =-2\left( 2x-1 \right) { e }^{ 2\left( 1-x \right)  }+2{ e }^{ 2\left( 1-x \right)  }\\ =2{ e }^{ 2\left( 1-x \right)  }\left( -2x+2 \right) $$
    Thus $$y'\left( x \right) =0\Rightarrow x=1$$ 
    Since $$y''\left( 1 \right) <0$$ so $$\left( 1,1 \right) $$ is the point of maximum and the equation of tangent is 
    $$y-1=0\left( x-1 \right)$$ ,i.e. $$y=1$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now