Self Studies

Tangents and its Equations Test 28

Result Self Studies

Tangents and its Equations Test 28
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    How many tangents are parallel to x-axis for the curve $$ y = x^2 - 4x + 3$$ ?
    Solution
    Slope of the tangent is $$\dfrac {dy} {dx}$$

    So, $$\dfrac{dy}{dx}=2x-4$$

    Tangent parallel to x-axis. So, slope of tangent should be $$0.$$

    $$\Rightarrow 2x-4=0$$

    $$\Rightarrow x=2$$ is the only point where slope is parallel to x-axis.

    So, only 1 tangent exists.
  • Question 2
    1 / -0
    The slope of the tangent to the curve given by $$x = 1 - \cos { \theta  }$$, $$y = \theta -\sin { \theta  } $$ at $$\theta = \dfrac { \pi  }{ 2 } $$ is
    Solution
    $$y=\theta -\sin\theta$$ 
    $$\Longrightarrow \dfrac { dy }{ d\theta  } =1-\cos\theta$$ 
    $$x=1-\cos\theta$$ 
    $$\Longrightarrow \dfrac { dx }{ d\theta  } =sin\theta $$
    Slope of the tangent is $$\dfrac{dy}{dx} $$
    $$\Longrightarrow \dfrac{dy}{dx} =\dfrac { 1-\cos\theta}{\sin\theta}$$

    At $$\theta =\dfrac { \pi  }{ 2 } $$
    $$\Longrightarrow \dfrac { dy }{ dx } =\dfrac { 1-\cos\frac { \pi  }{ 2 }  }{ \sin\frac { \pi  }{ 2 }  } =1$$
  • Question 3
    1 / -0
    The equations of tangent to the curve $$\left (\dfrac {x}{a}\right )^{n} + \left (\dfrac {y}{b}\right )^{n} = 2at, (a, b)$$ is $$5$$.
    Solution
    $${ \left( \dfrac { x }{ a }  \right)  }^{ n }+{ \left( \dfrac { y }{ b }  \right)  }^{ n }=2at$$
     $$n{ \left( \dfrac { x }{ a }  \right)  }^{ n-1 }\dfrac { 1 }{ a } +n{ \left( \dfrac { y }{ b }  \right)  }^{ n-1 }\dfrac { y\prime  }{ b } =0$$
     so, $$\dfrac { y\prime  }{ b } +\dfrac { 1 }{ a } =0$$ at $$(a,b)$$
     so, $$y\prime =\dfrac { -b }{ a } $$
     so, tangent equation
     $$\left( y-b \right) =\dfrac { -b }{ a } (x-a)$$ 
    $$ay-ab=-bx+ab$$
     $$bx+ay=2ab$$
     $$\boxed { \dfrac { x }{ a } +\dfrac { y }{ b } =2 } $$
  • Question 4
    1 / -0
    What is the slope of the tangent to the curve $$y=sin^{-1}(sin^2x)$$ at $$x=0$$ ?
    Solution
    Slope of tangent to a curve f(x), at a point $$({x}_{o},{y}_{o})$$ is given by $$f'(x)$$,
     where $$f'(x)$$ is derivative of f(x) at $$x={x}_{o}$$
    $$f(x) =\sin^{-1}({\sin ^{ 2 }{ x } })$$
    $${x}_{o}=0$$
    $$f'\left( x \right) =\cfrac { df\left( x \right)  }{ dx } =\cfrac { df(x) }{ d\sin ^{ 2 }{ x }  } \times \cfrac { d\sin ^{ 2 }{ x }  }{ d\sin x } \times \cfrac { d\sin x }{ dx } $$
     $$f'\left( x \right) =\cfrac { 1 }{ \sqrt { 1-\sin ^{ 2 }{ x }  }  } \times 2\sin x\times \cos x$$
     $$f'\left( 0 \right) =0$$
    Slope of tangent to the curve is 0
  • Question 5
    1 / -0
    Find the slope of the normal to the curve $$4x^3+6x^2-5xy-8y^2+9x+14=0$$T the point $$-2, 3$$.
    Solution
    The given curve is $$4x^3+6x^2-5xy-8y^2+9x+14=0$$

    Differentiating above equation w.r.t $$x$$, we get

    $$12{ x }^{ 2 }+12x-5x\cfrac { dy }{ dx } -5y-16y\cfrac { dy }{ dx } +9=0$$

    $$\Rightarrow \cfrac { dy }{ dx } =\cfrac { 12x^{ 2 }+12x-5y+9 }{ \left( 5x+16y \right)  } $$

    At $$\left( x,y \right) \equiv \left( -2,3 \right) $$

    $$m=\cfrac { dy }{ dx } =\dfrac{12(4)+12(-2)-5(3)+9}{5(-2)+16(3)}=\dfrac{18}{38}=\dfrac{9}{19}$$ is the slope of tangent to the curve
    Slope of normal is $$-\dfrac{1}{m}=-\dfrac{19}{9}$$

  • Question 6
    1 / -0
    A mirror in the first quadrant is in the shape of a hyperbola whose equation is xy = 1. A light source in the second quadrant emits a beam of light that hits the mirror at the point (2,1/2). If the reflected ray is parallel to the y-axis the slope of the incident beam is 

    Solution
    Slope of tangent at $$\left ( 2, \frac{1}{2} \right )$$
    $$m=-\dfrac{1}{4}$$
    $$tan \theta =-\dfrac{1}{y}$$

    $$\theta =\phi -90^o$$
    $$tan\theta =4$$
    Slope of incident ray $$= m$$ 
    $$\left | \dfrac{m-\left ( -\dfrac{1}{4} \right )}{1+m\left ( -\dfrac{1}{4} \right )} \right |=tan \theta =4$$

    $$\left | \dfrac{4m+1}{4-m} \right |=4$$

    $$4m + 1 = 16 - 4m$$
    $$m=\dfrac{15}{8}$$
  • Question 7
    1 / -0
    The equation to the tangent to the curve $$y={ be }^{ { -x }/{ a } }$$ at the point where it crosses the $$y$$-axis is
    Solution
    Slope of the tangent to $$f$$ is $$f'$$ 
    So, $$y'=\dfrac { d }{ dx } (b{ e }^{-x/a})=b\left(\dfrac { -1 }{ a }\right) {e }^{-x/a}$$
    When it crosses $$y-axis$$, point is $$(0,b)$$. 
    At $$(0,b)$$ slope is $$-\dfrac{b}{a}$$ and is passes through point $$(0,b)$$
    Then, the equation of line is $$y-b=-\dfrac{b}{a}(x-0)$$
    $$\implies ay-ab=-bx$$
    $$\implies \dfrac { x }{ a } +\dfrac { y }{ b } =1$$ is the equation of tangent.
     
  • Question 8
    1 / -0
    The point on the curve $$y = \sqrt {x - 1}$$ where the tangent is perpendicular to the line $$2x + y - 5 = 0$$ is
    Solution
    $$\dfrac {dy}{dx} = \dfrac {1}{2\sqrt {x - 1}} = m_{1}$$ is the slope of tangent to $$y=\sqrt{x-1}$$
    Slope of the line $$2x + y - 5 = 0$$ is $$m_{2} = -2$$
    For lines are perpendicular
    $$m_{1} m_{2} = -1$$ 
    $$\implies \left (\dfrac {1}{2\sqrt {x - 1}}\right )(-2) = -1$$
    $$\implies \dfrac {2}{2\sqrt {x - 1}} = 1$$
    $$\implies \sqrt {x - 1} = 1$$
    Squaring both sides, 
    $$\implies x - 1 = 1$$
    $$\implies x = 2$$
    $$\therefore y = \sqrt {x - 1}$$
    $$= \sqrt {2 - 1}$$
    $$= \sqrt {1}$$
    $$\therefore y = 1$$
    $$\therefore (2, 1)$$ is the point on the curve $$y=\sqrt{x-1}$$
  • Question 9
    1 / -0
    Consider the curve $$y = e^{2x}$$.Where does the tangent to the curve at (0, 1) meet the x-axis ? 
    Solution
    Slope of tangent at any point to the curve is given by $$\left|{ \cfrac { df\left( x \right)  }{ dx }  }\right|_{ ({ x }_{ 0 }, { y }_{ 0 }) }$$
    Here $$f(x)=y={e}^{2x}$$
    $$\Rightarrow \cfrac{dy}{dx}=2{e}^{2x}$$
    At point $$(0,1)$$
    $$\cfrac{dy}{dx}=2{e}^{2(0)}$$
    $$\cfrac{dy}{dx}=2$$
    Equation of tangent is at point $$({x}_{0},{y}_{0})$$
    $$y-{y}_{0}=m(x-{x}_{0})$$
    So, tangent at (0,1) is
    $$y-1=2(x-0)$$
    $$\therefore y=2x+1$$
    When this tangent meets x-axis, $$y$$ co-ordinate becomes zero
    Putting $$y$$ in above equation as zero, we get
    $$0=2x+1$$
    $$\Rightarrow x=\cfrac{-1}{2}$$
    Thus, the tangent to the curve meets at $$\left(-\dfrac{1}{2},0\right)$$
  • Question 10
    1 / -0
    The equation to the normal to the hyperbola $$\dfrac {x^{2}}{16} - \dfrac {y^{2}}{9} = 1$$ at $$(-4, 0)$$ is.
    Solution
    $$\dfrac { { x }^{ 2 } }{ 16 } -\dfrac { { y }^{ 2 } }{ 9 } =1$$
    Differentiating above equation, we get
    $$ \dfrac { { 2x } }{ 16 } -\dfrac { 2{ y } }{ 9 } .\dfrac { dy }{ dx } =0$$ 
    $$\implies \dfrac{dy}{dx}=\dfrac{9x}{16y}$$ 
    $$\implies m=\left|\dfrac { dy }{ dx }\right|_{(-4,0)} =\dfrac{9(-4)}{ 16(0)} =\infty$$ is the slope of tangent
    Slope of the normal is $$-\dfrac{1}{m} =0$$
    Slope of the normal is zero so it is parallel to $$y$$-axis.
    Equation of normal is $$y-0=0(x-(-4))$$
    $$\therefore y=0$$ is the equation of normal.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now