Self Studies

Tangents and its Equations Test 28

Result Self Studies

Tangents and its Equations Test 28
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    How many tangents are parallel to x-axis for the curve y=x24x+3 y = x^2 - 4x + 3 ?
    Solution
    Slope of the tangent is dydx\dfrac {dy} {dx}

    So, dydx=2x4\dfrac{dy}{dx}=2x-4

    Tangent parallel to x-axis. So, slope of tangent should be 0.0.

    2x4=0\Rightarrow 2x-4=0

    x=2\Rightarrow x=2 is the only point where slope is parallel to x-axis.

    So, only 1 tangent exists.
  • Question 2
    1 / -0
    The slope of the tangent to the curve given by x=1cosθ x = 1 - \cos { \theta  }, y=θsinθ y = \theta -\sin { \theta  } at θ=π 2\theta = \dfrac { \pi  }{ 2 } is
    Solution
    y=θsinθy=\theta -\sin\theta 
    dydθ =1cosθ\Longrightarrow \dfrac { dy }{ d\theta  } =1-\cos\theta 
    x=1cosθx=1-\cos\theta 
    dxdθ =sinθ\Longrightarrow \dfrac { dx }{ d\theta  } =sin\theta
    Slope of the tangent is dydx\dfrac{dy}{dx}
    dydx=1cosθsinθ\Longrightarrow \dfrac{dy}{dx} =\dfrac { 1-\cos\theta}{\sin\theta}

    At θ=π 2\theta =\dfrac { \pi  }{ 2 }
    dydx=1cosπ 2 sinπ 2 =1\Longrightarrow \dfrac { dy }{ dx } =\dfrac { 1-\cos\frac { \pi  }{ 2 }  }{ \sin\frac { \pi  }{ 2 }  } =1
  • Question 3
    1 / -0
    The equations of tangent to the curve (xa)n+(yb)n=2at,(a,b)\left (\dfrac {x}{a}\right )^{n} + \left (\dfrac {y}{b}\right )^{n} = 2at, (a, b) is 55.
    Solution
    (xa ) n+(yb ) n=2at{ \left( \dfrac { x }{ a }  \right)  }^{ n }+{ \left( \dfrac { y }{ b }  \right)  }^{ n }=2at
     n(xa ) n11a+n(yb ) n1y b=0n{ \left( \dfrac { x }{ a }  \right)  }^{ n-1 }\dfrac { 1 }{ a } +n{ \left( \dfrac { y }{ b }  \right)  }^{ n-1 }\dfrac { y\prime  }{ b } =0
     so, y b+1a=0\dfrac { y\prime  }{ b } +\dfrac { 1 }{ a } =0 at (a,b)(a,b)
     so, y=bay\prime =\dfrac { -b }{ a }
     so, tangent equation
     (yb)=ba(xa)\left( y-b \right) =\dfrac { -b }{ a } (x-a) 
    ayab=bx+abay-ab=-bx+ab
     bx+ay=2abbx+ay=2ab
     xa+yb=2\boxed { \dfrac { x }{ a } +\dfrac { y }{ b } =2 }
  • Question 4
    1 / -0
    What is the slope of the tangent to the curve y=sin1(sin2x)y=sin^{-1}(sin^2x) at x=0x=0 ?
    Solution
    Slope of tangent to a curve f(x), at a point (xo,yo)({x}_{o},{y}_{o}) is given by f(x)f'(x),
     where f(x)f'(x) is derivative of f(x) at x=xox={x}_{o}
    f(x)=sin1(sin2x)f(x) =\sin^{-1}({\sin ^{ 2 }{ x } })
    xo=0{x}_{o}=0
    f(x)=df(x) dx=df(x)dsin2x ×dsin2x dsinx×dsinxdxf'\left( x \right) =\cfrac { df\left( x \right)  }{ dx } =\cfrac { df(x) }{ d\sin ^{ 2 }{ x }  } \times \cfrac { d\sin ^{ 2 }{ x }  }{ d\sin x } \times \cfrac { d\sin x }{ dx }
     f(x)=11sin2x  ×2sinx×cosxf'\left( x \right) =\cfrac { 1 }{ \sqrt { 1-\sin ^{ 2 }{ x }  }  } \times 2\sin x\times \cos x
     f(0)=0f'\left( 0 \right) =0
    Slope of tangent to the curve is 0
  • Question 5
    1 / -0
    Find the slope of the normal to the curve 4x3+6x25xy8y2+9x+14=04x^3+6x^2-5xy-8y^2+9x+14=0T the point 2,3-2, 3.
    Solution
    The given curve is 4x3+6x25xy8y2+9x+14=04x^3+6x^2-5xy-8y^2+9x+14=0

    Differentiating above equation w.r.t xx, we get

    12x2+12x5xdydx5y16ydydx+9=012{ x }^{ 2 }+12x-5x\cfrac { dy }{ dx } -5y-16y\cfrac { dy }{ dx } +9=0

    dydx=12x2+12x5y+9(5x+16y) \Rightarrow \cfrac { dy }{ dx } =\cfrac { 12x^{ 2 }+12x-5y+9 }{ \left( 5x+16y \right)  }

    At (x,y)(2,3)\left( x,y \right) \equiv \left( -2,3 \right)

    m=dydx=12(4)+12(2)5(3)+95(2)+16(3)=1838=919m=\cfrac { dy }{ dx } =\dfrac{12(4)+12(-2)-5(3)+9}{5(-2)+16(3)}=\dfrac{18}{38}=\dfrac{9}{19} is the slope of tangent to the curve
    Slope of normal is 1m=199-\dfrac{1}{m}=-\dfrac{19}{9}

  • Question 6
    1 / -0
    A mirror in the first quadrant is in the shape of a hyperbola whose equation is xy = 1. A light source in the second quadrant emits a beam of light that hits the mirror at the point (2,1/2). If the reflected ray is parallel to the y-axis the slope of the incident beam is 

    Solution
    Slope of tangent at (2,12)\left ( 2, \frac{1}{2} \right )
    m=14m=-\dfrac{1}{4}
    tanθ=1ytan \theta =-\dfrac{1}{y}

    θ=ϕ90o\theta =\phi -90^o
    tanθ=4tan\theta =4
    Slope of incident ray =m= m 
    m(14)1+m(14)=tanθ=4\left | \dfrac{m-\left ( -\dfrac{1}{4} \right )}{1+m\left ( -\dfrac{1}{4} \right )} \right |=tan \theta =4

    4m+14m=4\left | \dfrac{4m+1}{4-m} \right |=4

    4m+1=164m4m + 1 = 16 - 4m
    m=158m=\dfrac{15}{8}
  • Question 7
    1 / -0
    The equation to the tangent to the curve y=bex/ay={ be }^{ { -x }/{ a } } at the point where it crosses the yy-axis is
    Solution
    Slope of the tangent to ff is ff' 
    So, y=ddx(bex/a)=b(1a)ex/ay'=\dfrac { d }{ dx } (b{ e }^{-x/a})=b\left(\dfrac { -1 }{ a }\right) {e }^{-x/a}
    When it crosses yaxisy-axis, point is (0,b)(0,b)
    At (0,b)(0,b) slope is ba-\dfrac{b}{a} and is passes through point (0,b)(0,b)
    Then, the equation of line is yb=ba(x0)y-b=-\dfrac{b}{a}(x-0)
        ayab=bx\implies ay-ab=-bx
        xa+yb=1\implies \dfrac { x }{ a } +\dfrac { y }{ b } =1 is the equation of tangent.
     
  • Question 8
    1 / -0
    The point on the curve y=x1y = \sqrt {x - 1} where the tangent is perpendicular to the line 2x+y5=02x + y - 5 = 0 is
    Solution
    dydx=12x1=m1\dfrac {dy}{dx} = \dfrac {1}{2\sqrt {x - 1}} = m_{1} is the slope of tangent to y=x1y=\sqrt{x-1}
    Slope of the line 2x+y5=02x + y - 5 = 0 is m2=2m_{2} = -2
    For lines are perpendicular
    m1m2=1m_{1} m_{2} = -1 
        (12x1)(2)=1\implies \left (\dfrac {1}{2\sqrt {x - 1}}\right )(-2) = -1
        22x1=1\implies \dfrac {2}{2\sqrt {x - 1}} = 1
        x1=1\implies \sqrt {x - 1} = 1
    Squaring both sides, 
        x1=1\implies x - 1 = 1
        x=2\implies x = 2
    y=x1\therefore y = \sqrt {x - 1}
    =21= \sqrt {2 - 1}
    =1= \sqrt {1}
    y=1\therefore y = 1
    (2,1)\therefore (2, 1) is the point on the curve y=x1y=\sqrt{x-1}
  • Question 9
    1 / -0
    Consider the curve y=e2xy = e^{2x}.Where does the tangent to the curve at (0, 1) meet the x-axis ? 
    Solution
    Slope of tangent at any point to the curve is given by df(x) dx (x0,y0)\left|{ \cfrac { df\left( x \right)  }{ dx }  }\right|_{ ({ x }_{ 0 }, { y }_{ 0 }) }
    Here f(x)=y=e2xf(x)=y={e}^{2x}
    dydx=2e2x\Rightarrow \cfrac{dy}{dx}=2{e}^{2x}
    At point (0,1)(0,1)
    dydx=2e2(0)\cfrac{dy}{dx}=2{e}^{2(0)}
    dydx=2\cfrac{dy}{dx}=2
    Equation of tangent is at point (x0,y0)({x}_{0},{y}_{0})
    yy0=m(xx0)y-{y}_{0}=m(x-{x}_{0})
    So, tangent at (0,1) is
    y1=2(x0)y-1=2(x-0)
    y=2x+1\therefore y=2x+1
    When this tangent meets x-axis, yy co-ordinate becomes zero
    Putting yy in above equation as zero, we get
    0=2x+10=2x+1
    x=12\Rightarrow x=\cfrac{-1}{2}
    Thus, the tangent to the curve meets at (12,0)\left(-\dfrac{1}{2},0\right)
  • Question 10
    1 / -0
    The equation to the normal to the hyperbola x216y29=1\dfrac {x^{2}}{16} - \dfrac {y^{2}}{9} = 1 at (4,0)(-4, 0) is.
    Solution
    x216y29=1\dfrac { { x }^{ 2 } }{ 16 } -\dfrac { { y }^{ 2 } }{ 9 } =1
    Differentiating above equation, we get
    2x162y9.dydx=0 \dfrac { { 2x } }{ 16 } -\dfrac { 2{ y } }{ 9 } .\dfrac { dy }{ dx } =0 
        dydx=9x16y\implies \dfrac{dy}{dx}=\dfrac{9x}{16y} 
        m=dydx(4,0)=9(4)16(0)=\implies m=\left|\dfrac { dy }{ dx }\right|_{(-4,0)} =\dfrac{9(-4)}{ 16(0)} =\infty is the slope of tangent
    Slope of the normal is 1m=0-\dfrac{1}{m} =0
    Slope of the normal is zero so it is parallel to yy-axis.
    Equation of normal is y0=0(x(4))y-0=0(x-(-4))
    y=0\therefore y=0 is the equation of normal.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now