We have,
$$\sqrt{x}+\sqrt{y}=\sqrt{a}$$
Differentiation this equation with respect to $$x$$ and we get,
$$ \dfrac{d}{dx}\left( \sqrt{x}+\sqrt{y} \right)=\dfrac{d}{dx}\sqrt{a}
$$
$$ \dfrac{1}{2\sqrt{x}}+\dfrac{1}{2\sqrt{y}}\dfrac{dy}{dx}=0
$$
$$ \dfrac{1}{2\sqrt{y}}\dfrac{dy}{dx}=-\dfrac{1}{2\sqrt{x}} $$
$$ \dfrac{dy}{dx}=-\dfrac{\sqrt{y}}{\sqrt{x}} $$
At point $$\left( {{x}_{1}},{{y}_{1}} \right)$$
$${{\left( \dfrac{dy}{dx} \right)}_{\left(
{{x}_{1}},{{y}_{1}} \right)}}=-\dfrac{\sqrt{{{y}_{1}}}}{\sqrt{{{x}_{1}}}}$$
We know that,
Equation of tangent.
$$y-{{y}_{1}}=\dfrac{dy}{dx}\left( x-{{x}_{1}} \right)$$
At point $$\left( {{x}_{1}},{{y}_{1}} \right)$$
$$ y-{{y}_{1}}=-\dfrac{\sqrt{{{y}_{1}}}}{\sqrt{{{x}_{1}}}}\left(
x-{{x}_{1}} \right) $$
$$ y\sqrt{{{x}_{1}}}-{{y}_{1}}\sqrt{{{x}_{1}}}=-\sqrt{{{y}_{1}}}\left(
x-{{x}_{1}} \right) $$
$$
y\sqrt{{{x}_{1}}}-{{y}_{1}}\sqrt{{{x}_{1}}}=-x\sqrt{{{y}_{1}}}+{{x}_{1}}\sqrt{{{y}_{1}}}
$$
$$
y\sqrt{{{x}_{1}}}+x\sqrt{{{y}_{1}}}={{y}_{1}}\sqrt{{{x}_{1}}}+{{x}_{1}}\sqrt{{{y}_{1}}}
$$
On divide $$\sqrt{{{x}_{1}}{{y}_{1}}}$$ both side and we
get,
$$ \dfrac{y\sqrt{{{x}_{1}}}+x\sqrt{{{y}_{1}}}}{\sqrt{{{x}_{1}}}\sqrt{{{y}_{1}}}}=\dfrac{{{y}_{1}}\sqrt{{{x}_{1}}}+{{x}_{1}}\sqrt{{{y}_{1}}}}{\sqrt{{{x}_{1}}}\sqrt{{{y}_{1}}}}
$$
$$ \dfrac{y}{\sqrt{{{y}_{1}}}}+\dfrac{x}{\sqrt{{{x}_{1}}}}=\sqrt{{{y}_{1}}}+\sqrt{{{x}_{1}}}
$$
$$ \dfrac{x}{\sqrt{{{x}_{1}}}}+\dfrac{y}{\sqrt{{{y}_{1}}}}=\sqrt{a}
$$
Hence, this is the answer.