We have,
x 2 3 + y 2 3 = a 2 3 {{x}^{\frac{2}{3}}}+{{y}^{\frac{2}{3}}}={{a}^{\frac{2}{3}}} x 3 2 + y 3 2 = a 3 2
Then,
d d x ( x 2 3 + y 2 3 ) = d d x ( a 2 3 ) \dfrac{d}{dx}\left(
{{x}^{\frac{2}{3}}}+{{y}^{\frac{2}{3}}} \right)=\dfrac{d}{dx}\left(
{{a}^{\frac{2}{3}}} \right) d x d ( x 3 2 + y 3 2 ) = d x d ( a 3 2 )
2 3 x − 1 3 + 2 3 y − 1 3 d y d x = 0
\dfrac{2}{3}{{x}^{-\frac{1}{3}}}+\dfrac{2}{3}{{y}^{-\frac{1}{3}}}\dfrac{dy}{dx}=0
3 2 x − 3 1 + 3 2 y − 3 1 d x d y = 0
x − 1 3 + y − 1 3 d y d x = 0
{{x}^{-\frac{1}{3}}}+{{y}^{-\frac{1}{3}}}\dfrac{dy}{dx}=0 x − 3 1 + y − 3 1 d x d y = 0
d y d x = ( − x y ) − 1 3 \dfrac{dy}{dx}={{\left( -\dfrac{x}{y}
\right)}^{-\frac{1}{3}}} d x d y = ( − y x ) − 3 1
d y d x = ( − y x ) 1 3 \dfrac{dy}{dx}={{\left( -\dfrac{y}{x}
\right)}^{\frac{1}{3}}} d x d y = ( − x y ) 3 1
At point ( a , 0 ) \left( a, 0 \right) ( a , 0 )
( d y d x ) ( a , 0 ) = ( − y x ) 1 3 ( a , 0 ) {{\left( \dfrac{dy}{dx} \right)}_{\left(
a,0 \right)}}={{\left( -\dfrac{y}{x} \right)}^{\frac{1}{3}}}_{\left( a,0
\right)} ( d x d y ) ( a , 0 ) = ( − x y ) 3 1 ( a , 0 )
( d y d x ) ( a , 0 ) = ( − 0 a ) 1 3 {{\left( \dfrac{dy}{dx} \right)}_{\left(
a,0 \right)}}={{\left( -\dfrac{0}{a} \right)}^{\frac{1}{3}}} ( d x d y ) ( a , 0 ) = ( − a 0 ) 3 1
( d y d x ) ( a , 0 ) = 0 {{\left( \dfrac{dy}{dx} \right)}_{\left(
a,0 \right)}}=0 ( d x d y ) ( a , 0 ) = 0
Equation of normal is
y − y 1 = − 1 ( d y d x ) ( a , 0 ) ( x − x 1 ) y-{{y}_{1}}=-\dfrac{1}{{{\left(
\dfrac{dy}{dx} \right)}_{\left( a,0 \right)}}}\left( x-{{x}_{1}} \right) y − y 1 = − ( d x d y ) ( a , 0 ) 1 ( x − x 1 )
y − y 1 = 1 0 ( x − x 1 ) y-{{y}_{1}}=\dfrac{1}{0}\left( x-{{x}_{1}}
\right) y − y 1 = 0 1 ( x − x 1 )
Equation of normal at point ( a , 0 ) \left( a,0
\right) ( a , 0 ) and we get,
y − 0 = 1 0 ( x − a ) y-0=\dfrac{1}{0}\left( x-a \right) y − 0 = 0 1 ( x − a )
x − a = 0 x-a=0 x − a = 0
x = a x=a x = a
Hence, this is the answer.