Self Studies

Tangents and its Equations Test 35

Result Self Studies

Tangents and its Equations Test 35
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The equation of tangent to the curve x+y=a\sqrt {x}+ \sqrt {y}= \sqrt {a} at the point (x1,y1)\left( { x }_{ 1 },{ y }_{ 1 } \right) is-
    Solution

    We have,

    x+y=a\sqrt{x}+\sqrt{y}=\sqrt{a}

    Differentiation this equation with respect to xx  and we get,

    ddx(x+y)=ddxa \dfrac{d}{dx}\left( \sqrt{x}+\sqrt{y} \right)=\dfrac{d}{dx}\sqrt{a}

    12x+12ydydx=0 \dfrac{1}{2\sqrt{x}}+\dfrac{1}{2\sqrt{y}}\dfrac{dy}{dx}=0

    12ydydx=12x \dfrac{1}{2\sqrt{y}}\dfrac{dy}{dx}=-\dfrac{1}{2\sqrt{x}}

    dydx=yx \dfrac{dy}{dx}=-\dfrac{\sqrt{y}}{\sqrt{x}}

    At point (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right)

    (dydx)(x1,y1)=y1x1{{\left( \dfrac{dy}{dx} \right)}_{\left( {{x}_{1}},{{y}_{1}} \right)}}=-\dfrac{\sqrt{{{y}_{1}}}}{\sqrt{{{x}_{1}}}}

     We know that,

    Equation of tangent.

    yy1=dydx(xx1)y-{{y}_{1}}=\dfrac{dy}{dx}\left( x-{{x}_{1}} \right)

    At point (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right)

    yy1=y1x1(xx1) y-{{y}_{1}}=-\dfrac{\sqrt{{{y}_{1}}}}{\sqrt{{{x}_{1}}}}\left( x-{{x}_{1}} \right)

    yx1y1x1=y1(xx1) y\sqrt{{{x}_{1}}}-{{y}_{1}}\sqrt{{{x}_{1}}}=-\sqrt{{{y}_{1}}}\left( x-{{x}_{1}} \right)

    yx1y1x1=xy1+x1y1 y\sqrt{{{x}_{1}}}-{{y}_{1}}\sqrt{{{x}_{1}}}=-x\sqrt{{{y}_{1}}}+{{x}_{1}}\sqrt{{{y}_{1}}}

    yx1+xy1=y1x1+x1y1 y\sqrt{{{x}_{1}}}+x\sqrt{{{y}_{1}}}={{y}_{1}}\sqrt{{{x}_{1}}}+{{x}_{1}}\sqrt{{{y}_{1}}}

    On divide x1y1\sqrt{{{x}_{1}}{{y}_{1}}} both side and we get,

    yx1+xy1x1y1=y1x1+x1y1x1y1 \dfrac{y\sqrt{{{x}_{1}}}+x\sqrt{{{y}_{1}}}}{\sqrt{{{x}_{1}}}\sqrt{{{y}_{1}}}}=\dfrac{{{y}_{1}}\sqrt{{{x}_{1}}}+{{x}_{1}}\sqrt{{{y}_{1}}}}{\sqrt{{{x}_{1}}}\sqrt{{{y}_{1}}}}

    yy1+xx1=y1+x1 \dfrac{y}{\sqrt{{{y}_{1}}}}+\dfrac{x}{\sqrt{{{x}_{1}}}}=\sqrt{{{y}_{1}}}+\sqrt{{{x}_{1}}}

    xx1+yy1=a \dfrac{x}{\sqrt{{{x}_{1}}}}+\dfrac{y}{\sqrt{{{y}_{1}}}}=\sqrt{a}

    Hence, this is the answer.
  • Question 2
    1 / -0
    The equation normal to the curve x2/3+y2/3=a2/3x^{2/3}+y^{2/3}=a^{2/3} at the point (a,0)(a, 0) is-
    Solution

    We have,

    x23+y23=a23{{x}^{\frac{2}{3}}}+{{y}^{\frac{2}{3}}}={{a}^{\frac{2}{3}}}

     

    Then,

    ddx(x23+y23)=ddx(a23) \dfrac{d}{dx}\left( {{x}^{\frac{2}{3}}}+{{y}^{\frac{2}{3}}} \right)=\dfrac{d}{dx}\left( {{a}^{\frac{2}{3}}} \right)

    23x13+23y13dydx=0 \dfrac{2}{3}{{x}^{-\frac{1}{3}}}+\dfrac{2}{3}{{y}^{-\frac{1}{3}}}\dfrac{dy}{dx}=0

    x13+y13dydx=0 {{x}^{-\frac{1}{3}}}+{{y}^{-\frac{1}{3}}}\dfrac{dy}{dx}=0

    dydx=(xy)13 \dfrac{dy}{dx}={{\left( -\dfrac{x}{y} \right)}^{-\frac{1}{3}}}

    dydx=(yx)13 \dfrac{dy}{dx}={{\left( -\dfrac{y}{x} \right)}^{\frac{1}{3}}}

     

    At point (a,0)\left( a, 0 \right)

    (dydx)(a,0)=(yx)13(a,0) {{\left( \dfrac{dy}{dx} \right)}_{\left( a,0 \right)}}={{\left( -\dfrac{y}{x} \right)}^{\frac{1}{3}}}_{\left( a,0 \right)}

    (dydx)(a,0)=(0a)13 {{\left( \dfrac{dy}{dx} \right)}_{\left( a,0 \right)}}={{\left( -\dfrac{0}{a} \right)}^{\frac{1}{3}}}

    (dydx)(a,0)=0 {{\left( \dfrac{dy}{dx} \right)}_{\left( a,0 \right)}}=0

     

    Equation of normal is

    yy1=1(dydx)(a,0)(xx1) y-{{y}_{1}}=-\dfrac{1}{{{\left( \dfrac{dy}{dx} \right)}_{\left( a,0 \right)}}}\left( x-{{x}_{1}} \right)

    yy1=10(xx1) y-{{y}_{1}}=\dfrac{1}{0}\left( x-{{x}_{1}} \right)

    Equation of normal at point (a,0)\left( a,0 \right) and we get,

    y0=10(xa) y-0=\dfrac{1}{0}\left( x-a \right)

    xa=0 x-a=0

    x=a x=a

     

    Hence, this is the answer.

  • Question 3
    1 / -0
    The normal to the curve y(x2)(x3)=x+6y(x - 2)(x - 3) = x + 6 at the point where the curve intersects the y-axis passes through point 
    Solution

  • Question 4
    1 / -0
    The equation of the tangent to the curve y=2sinx+sin2xy = 2\sin x + \sin 2x at x=π3x = \dfrac{\pi}{3} on it is
    Solution
    y=2sinx+sin2xy=2\sin { x } +\sin { 2x }
    dydx=2cosx+2cos2x\cfrac { dy }{ dx } =2\cos { x } +2\cos { 2x }
    dydx  x=π 3 =2cosπ 3 +2cos2π 3 =1+2cos(ππ 3 ) =12cosπ 3 =0{ \left| \cfrac { dy }{ dx }  \right|  }_{ x=\cfrac { \pi  }{ 3 }  }=2\cos { \cfrac { \pi  }{ 3 }  } +2\cos { \cfrac { 2\pi  }{ 3 }  } =1+2\cos { \left( \pi -\cfrac { \pi  }{ 3 }  \right)  } =1-2\cos { \cfrac { \pi  }{ 3 }  } =0
    At x=π3x=\cfrac{\pi}{3}
    y=2sinπ 3 +sin2π 3 y=2\sin { \cfrac { \pi  }{ 3 }  } +\sin { \cfrac { 2\pi  }{ 3 }  }
    y=2.3 2+sin(ππ 3 ) =3+3 2=33 2y=2.\cfrac { \sqrt { 3 }  }{ 2 } +\sin { \left( \pi -\cfrac { \pi  }{ 3 }  \right)  } =\sqrt { 3 } +\cfrac { \sqrt { 3 }  }{ 2 } =\cfrac { 3\sqrt { 3 }  }{ 2 }
    equation of tangent
    (y33 2 )=dydx  x=π 3 (xπ 3 )y33 2=02y33=0\left( y-\cfrac { 3\sqrt { 3 }  }{ 2 }  \right) ={ \left| \cfrac { dy }{ dx }  \right|  }_{ x=\cfrac { \pi  }{ 3 }  }\left( x-\cfrac { \pi  }{ 3 }  \right) \Rightarrow y-\cfrac { 3\sqrt { 3 }  }{ 2 } =0\Rightarrow 2y-3\sqrt { 3 } =0
    \therefore Equation of tangent to the curve 2y33=02y-3\sqrt { 3 } =0
  • Question 5
    1 / -0
    Equation of normal drawn to the graph of the function defined as f(x)=sinx2x,x0f(x)=\cfrac{\sin{x}^{2}}{x},x\ne 0 and f(0)=0f(0)=0 at the origin is
    Solution
    y=sinx2 xy=\cfrac { \sin { { x }^{ 2 } }  }{ x }
    dydx=(x)(cosx2 )(2x)(sinx2 )(1) x2\cfrac { dy }{ dx } =\cfrac { \left( x \right) \left( \cos { { x }^{ 2 } }  \right) \left( 2x \right) -\left( \sin { { x }^{ 2 } }  \right) \left( 1 \right)  }{ { x }^{ 2 } }
    dydx=2cosx2sinx2 x2\cfrac { dy }{ dx } =2\cos { { x }^{ 2 } } -\cfrac { \sin { { x }^{ 2 } }  }{ { x }^{ 2 } }
    at (x,y)=(0,0)dydx=limx0(2cosx2sinx2 x2 ) =21=1\left( x,y \right) =\left( 0,0 \right) \Rightarrow \cfrac { dy }{ dx } =\lim _{ x\rightarrow 0 }{ \left( 2\cos { { x }^{ 2 } } -\cfrac { \sin { { x }^{ 2 } }  }{ { x }^{ 2 } }  \right)  } =2-1=1
    slope or normal =dxdy=1=-\cfrac { dx }{ dy } =-1
    equation of normal =y0x0=1= \cfrac { y-0 }{ x-0 } =-1
    x+y=0\Rightarrow x+y=0
  • Question 6
    1 / -0
    The equation of tangent to the curve y=x+9x+5y=\dfrac{x+9}{x+5} so that is passes through the origin is
    Solution
    Equation of tangent of yy == x+9x+5\dfrac{x+9}{x+5} that passes through again be y=mxy=mx 
    dydx=4(x+5)2\dfrac{dy}{dx} = \dfrac{-4}{(x+5)^{2}}
     Value of dy/dxdy/dx should be as the mm or y/xy/x at that point (x1,y1x_{1} , y_{1})
     4(x1+5)2=y1x1\dfrac{-4}{(x_{1}+ 5)^{2}} = \dfrac{y_{1}}{x_{1}}
     4(x1+5)2=(x1+9(x1+5)(x1)\dfrac{-4}{(x_{1}+5)^{2}} = \dfrac{(x_{1}+9}{(x_{1}+5)(x_{1})}  
    x12+18x+45=0x_{1}^{2}+18x+45=0
     x1=3x_{1}=-3
     y1=3y_{1}=3 
    m=y1x1=33=1m=\dfrac{y_{1}}{x_{1}} = \dfrac{-3}{-3}=-1
     Tangent  y=x\rightarrow  y= -x 
    x+y=0x+y=0
  • Question 7
    1 / -0
    The curve y=ax3+bx2+cx+5=ax^3+bx^2+cx+5 touches the x-axis at P(2,0)P(-2, 0) then C=?C=?
    Solution
    As the curve pases through the point (2,0)(-2,0) 
    So,
    0=8a+4b2c+50 = -8a+4b-2c+5
    8a4b+2c=5.....(i)8a-4b+2c = 5.....(i)
    Also, the tangent parallel to x-axis is 0. Hence,
    3ax2+2bx+c=dydx3ax^2+2bx+c = \cfrac{dy}{dx}
    12a4b+c=0.......(ii)12a-4b+c = 0.......(ii)
    Subtracting (ii) from (i), we get
    4a+c=5-4a+c = 5
    c=4a+5c = 4a+5 
  • Question 8
    1 / -0
    The equation of the tangent to the curve y=92x2y=\sqrt{9-2x^2} at the point where the ordinate and abscises are equal is?
    Solution
    y2+2x2=9y^2+2x^2 = 9
    2ydydx+4x=02y\cfrac{dy}{dx} + 4x = 0
    As x=yx=y
    dydx=2\cfrac{dy}{dx} = -2
    From the curve equation,
    3x2=93x^2 = 9
    or,x=±3x = \pm \sqrt3
    y=2x+cy = -2x+c
    3+23=c\sqrt3 + 2\sqrt3 = c
    33=c3\sqrt3 = c
    Equation of the line = 2x+y=332x+y =3\sqrt3
  • Question 9
    1 / -0
    If the curves x2a2+y24=1\dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{4}=1 and y2=16xy^{2}=16x intersect at right angles then value of a2a^{2} is
    Solution

  • Question 10
    1 / -0
    Slope of the line x2+4y24xy+4+x2y=1 \sqrt { { x }^{ 2 }+{ 4y }^{ 2 }-4xy+4 } +x-2y=1 equals to
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now