Self Studies

Tangents and its Equations Test 35

Result Self Studies

Tangents and its Equations Test 35
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The equation of tangent to the curve $$\sqrt {x}+ \sqrt {y}= \sqrt {a}$$ at the point $$\left( { x }_{ 1 },{ y }_{ 1 } \right) $$ is-
    Solution

    We have,

    $$\sqrt{x}+\sqrt{y}=\sqrt{a}$$

    Differentiation this equation with respect to $$x$$  and we get,

    $$ \dfrac{d}{dx}\left( \sqrt{x}+\sqrt{y} \right)=\dfrac{d}{dx}\sqrt{a} $$

    $$ \dfrac{1}{2\sqrt{x}}+\dfrac{1}{2\sqrt{y}}\dfrac{dy}{dx}=0 $$

    $$ \dfrac{1}{2\sqrt{y}}\dfrac{dy}{dx}=-\dfrac{1}{2\sqrt{x}} $$

    $$ \dfrac{dy}{dx}=-\dfrac{\sqrt{y}}{\sqrt{x}} $$

    At point $$\left( {{x}_{1}},{{y}_{1}} \right)$$

    $${{\left( \dfrac{dy}{dx} \right)}_{\left( {{x}_{1}},{{y}_{1}} \right)}}=-\dfrac{\sqrt{{{y}_{1}}}}{\sqrt{{{x}_{1}}}}$$

     We know that,

    Equation of tangent.

    $$y-{{y}_{1}}=\dfrac{dy}{dx}\left( x-{{x}_{1}} \right)$$

    At point $$\left( {{x}_{1}},{{y}_{1}} \right)$$

    $$ y-{{y}_{1}}=-\dfrac{\sqrt{{{y}_{1}}}}{\sqrt{{{x}_{1}}}}\left( x-{{x}_{1}} \right) $$

    $$ y\sqrt{{{x}_{1}}}-{{y}_{1}}\sqrt{{{x}_{1}}}=-\sqrt{{{y}_{1}}}\left( x-{{x}_{1}} \right) $$

    $$ y\sqrt{{{x}_{1}}}-{{y}_{1}}\sqrt{{{x}_{1}}}=-x\sqrt{{{y}_{1}}}+{{x}_{1}}\sqrt{{{y}_{1}}} $$

    $$ y\sqrt{{{x}_{1}}}+x\sqrt{{{y}_{1}}}={{y}_{1}}\sqrt{{{x}_{1}}}+{{x}_{1}}\sqrt{{{y}_{1}}} $$

    On divide $$\sqrt{{{x}_{1}}{{y}_{1}}}$$ both side and we get,

    $$ \dfrac{y\sqrt{{{x}_{1}}}+x\sqrt{{{y}_{1}}}}{\sqrt{{{x}_{1}}}\sqrt{{{y}_{1}}}}=\dfrac{{{y}_{1}}\sqrt{{{x}_{1}}}+{{x}_{1}}\sqrt{{{y}_{1}}}}{\sqrt{{{x}_{1}}}\sqrt{{{y}_{1}}}} $$

    $$ \dfrac{y}{\sqrt{{{y}_{1}}}}+\dfrac{x}{\sqrt{{{x}_{1}}}}=\sqrt{{{y}_{1}}}+\sqrt{{{x}_{1}}} $$

    $$ \dfrac{x}{\sqrt{{{x}_{1}}}}+\dfrac{y}{\sqrt{{{y}_{1}}}}=\sqrt{a} $$

    Hence, this is the answer.
  • Question 2
    1 / -0
    The equation normal to the curve $$x^{2/3}+y^{2/3}=a^{2/3}$$ at the point $$(a, 0)$$ is-
    Solution

    We have,

    $${{x}^{\frac{2}{3}}}+{{y}^{\frac{2}{3}}}={{a}^{\frac{2}{3}}}$$

     

    Then,

    $$ \dfrac{d}{dx}\left( {{x}^{\frac{2}{3}}}+{{y}^{\frac{2}{3}}} \right)=\dfrac{d}{dx}\left( {{a}^{\frac{2}{3}}} \right) $$

    $$ \dfrac{2}{3}{{x}^{-\frac{1}{3}}}+\dfrac{2}{3}{{y}^{-\frac{1}{3}}}\dfrac{dy}{dx}=0 $$

    $$ {{x}^{-\frac{1}{3}}}+{{y}^{-\frac{1}{3}}}\dfrac{dy}{dx}=0 $$

    $$ \dfrac{dy}{dx}={{\left( -\dfrac{x}{y} \right)}^{-\frac{1}{3}}} $$

    $$ \dfrac{dy}{dx}={{\left( -\dfrac{y}{x} \right)}^{\frac{1}{3}}} $$

     

    At point $$\left( a, 0 \right)$$

    $$ {{\left( \dfrac{dy}{dx} \right)}_{\left( a,0 \right)}}={{\left( -\dfrac{y}{x} \right)}^{\frac{1}{3}}}_{\left( a,0 \right)} $$

    $$ {{\left( \dfrac{dy}{dx} \right)}_{\left( a,0 \right)}}={{\left( -\dfrac{0}{a} \right)}^{\frac{1}{3}}} $$

    $$ {{\left( \dfrac{dy}{dx} \right)}_{\left( a,0 \right)}}=0 $$

     

    Equation of normal is

    $$ y-{{y}_{1}}=-\dfrac{1}{{{\left( \dfrac{dy}{dx} \right)}_{\left( a,0 \right)}}}\left( x-{{x}_{1}} \right) $$

    $$ y-{{y}_{1}}=\dfrac{1}{0}\left( x-{{x}_{1}} \right) $$

    Equation of normal at point $$\left( a,0 \right)$$ and we get,

    $$ y-0=\dfrac{1}{0}\left( x-a \right) $$

    $$ x-a=0 $$

    $$ x=a $$

     

    Hence, this is the answer.

  • Question 3
    1 / -0
    The normal to the curve $$y(x - 2)(x - 3) = x + 6$$ at the point where the curve intersects the y-axis passes through point 
    Solution

  • Question 4
    1 / -0
    The equation of the tangent to the curve $$y = 2\sin x + \sin 2x$$ at $$x = \dfrac{\pi}{3}$$ on it is
    Solution
    $$y=2\sin { x } +\sin { 2x } $$
    $$\cfrac { dy }{ dx } =2\cos { x } +2\cos { 2x } $$
    $${ \left| \cfrac { dy }{ dx }  \right|  }_{ x=\cfrac { \pi  }{ 3 }  }=2\cos { \cfrac { \pi  }{ 3 }  } +2\cos { \cfrac { 2\pi  }{ 3 }  } =1+2\cos { \left( \pi -\cfrac { \pi  }{ 3 }  \right)  } =1-2\cos { \cfrac { \pi  }{ 3 }  } =0$$
    At $$x=\cfrac{\pi}{3}$$
    $$y=2\sin { \cfrac { \pi  }{ 3 }  } +\sin { \cfrac { 2\pi  }{ 3 }  } $$
    $$y=2.\cfrac { \sqrt { 3 }  }{ 2 } +\sin { \left( \pi -\cfrac { \pi  }{ 3 }  \right)  } =\sqrt { 3 } +\cfrac { \sqrt { 3 }  }{ 2 } =\cfrac { 3\sqrt { 3 }  }{ 2 } $$
    equation of tangent
    $$\left( y-\cfrac { 3\sqrt { 3 }  }{ 2 }  \right) ={ \left| \cfrac { dy }{ dx }  \right|  }_{ x=\cfrac { \pi  }{ 3 }  }\left( x-\cfrac { \pi  }{ 3 }  \right) \Rightarrow y-\cfrac { 3\sqrt { 3 }  }{ 2 } =0\Rightarrow 2y-3\sqrt { 3 } =0$$
    $$\therefore$$ Equation of tangent to the curve $$2y-3\sqrt { 3 } =0$$
  • Question 5
    1 / -0
    Equation of normal drawn to the graph of the function defined as $$f(x)=\cfrac{\sin{x}^{2}}{x},x\ne 0$$ and $$f(0)=0$$ at the origin is
    Solution
    $$y=\cfrac { \sin { { x }^{ 2 } }  }{ x } $$
    $$\cfrac { dy }{ dx } =\cfrac { \left( x \right) \left( \cos { { x }^{ 2 } }  \right) \left( 2x \right) -\left( \sin { { x }^{ 2 } }  \right) \left( 1 \right)  }{ { x }^{ 2 } } $$
    $$\cfrac { dy }{ dx } =2\cos { { x }^{ 2 } } -\cfrac { \sin { { x }^{ 2 } }  }{ { x }^{ 2 } } $$
    at $$\left( x,y \right) =\left( 0,0 \right) \Rightarrow \cfrac { dy }{ dx } =\lim _{ x\rightarrow 0 }{ \left( 2\cos { { x }^{ 2 } } -\cfrac { \sin { { x }^{ 2 } }  }{ { x }^{ 2 } }  \right)  } =2-1=1$$
    slope or normal $$=-\cfrac { dx }{ dy } =-1$$
    equation of normal $$= \cfrac { y-0 }{ x-0 } =-1$$
    $$\Rightarrow x+y=0$$
  • Question 6
    1 / -0
    The equation of tangent to the curve $$y=\dfrac{x+9}{x+5}$$ so that is passes through the origin is
    Solution
    Equation of tangent of $$y$$ $$=$$ $$\dfrac{x+9}{x+5}$$ that passes through again be $$y=mx$$ 
    $$\dfrac{dy}{dx} = \dfrac{-4}{(x+5)^{2}}$$
     Value of $$dy/dx$$ should be as the $$m$$ or $$y/x$$ at that point ($$x_{1} , y_{1}$$)
     $$\dfrac{-4}{(x_{1}+ 5)^{2}} = \dfrac{y_{1}}{x_{1}}$$
     $$\dfrac{-4}{(x_{1}+5)^{2}} = \dfrac{(x_{1}+9}{(x_{1}+5)(x_{1})}$$  
    $$x_{1}^{2}+18x+45=0$$
     $$x_{1}=-3$$
     $$y_{1}=3$$ 
    $$m=\dfrac{y_{1}}{x_{1}} = \dfrac{-3}{-3}=-1$$
     Tangent $$\rightarrow  y= -x$$ 
    $$x+y=0$$
  • Question 7
    1 / -0
    The curve y$$=ax^3+bx^2+cx+5$$ touches the x-axis at $$P(-2, 0)$$ then $$C=?$$
    Solution
    As the curve pases through the point $$(-2,0)$$ 
    So,
    $$0 = -8a+4b-2c+5$$
    $$8a-4b+2c = 5.....(i)$$
    Also, the tangent parallel to x-axis is 0. Hence,
    $$3ax^2+2bx+c = \cfrac{dy}{dx}$$
    $$12a-4b+c = 0.......(ii)$$
    Subtracting (ii) from (i), we get
    $$-4a+c = 5$$
    $$c = 4a+5$$ 
  • Question 8
    1 / -0
    The equation of the tangent to the curve $$y=\sqrt{9-2x^2}$$ at the point where the ordinate and abscises are equal is?
    Solution
    $$y^2+2x^2 = 9$$
    $$2y\cfrac{dy}{dx} + 4x = 0$$
    As $$x=y$$
    $$\cfrac{dy}{dx} = -2$$
    From the curve equation,
    $$3x^2 = 9$$
    or,$$x = \pm \sqrt3$$
    $$y = -2x+c$$
    $$\sqrt3 + 2\sqrt3 = c$$
    $$3\sqrt3 = c$$
    Equation of the line = $$2x+y =3\sqrt3$$
  • Question 9
    1 / -0
    If the curves $$\dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{4}=1$$ and $$y^{2}=16x$$ intersect at right angles then value of $$a^{2}$$ is
    Solution

  • Question 10
    1 / -0
    Slope of the line $$ \sqrt { { x }^{ 2 }+{ 4y }^{ 2 }-4xy+4 } +x-2y=1$$ equals to
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now