Self Studies

Tangents and its Equations Test 48

Result Self Studies

Tangents and its Equations Test 48
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    At the point P(a,a)P(a,a'') on the graph of y=xny=x^n, (nϵN)(n \epsilon N), in the first quadrant , a normal is drawn. The normal intersects the yy-axis at the point (0,b)(0,b). If lima0b=12\lim_{a\rightarrow 0}b=\displaystyle \frac{1}{2}, then n equals
    Solution
    y=xny=x^{n}
    dydx=nxn1\displaystyle \dfrac{dy}{dx}=nx^{n-1}
    (dydx)(a,an)=nan1\displaystyle (\dfrac{dy}{dx})_{(a,a^{n})}=na^{n-1}
    Slope of normal at P, =1nan1=-\dfrac{1}{na^{n-1}}
    Equation of normal at P is 
    yan=1nan1(xa) y-{ a }^{ n }=-\dfrac { 1 }{ n{ a }^{ n-1 } } (x-a)
    Since, it intersects y-axis at (0,b)
    ban=anan1\Rightarrow b-a^{n}=\dfrac{a}{na^{n-1}}
    lima0blima0an=lima0(anan1)\Rightarrow \lim _{ a\rightarrow 0 }{ b- } \lim _{ a\rightarrow 0 }{ { a }^{ n } } =\lim _{ a\rightarrow 0 }{ (\dfrac { a }{ n{ a }^{ n-1 } } ) }
    12=lima0(anan1) \Rightarrow \dfrac { 1 }{ 2 } =\lim _{ a\rightarrow 0 }{ (\dfrac { a }{ n{ a }^{ n-1 } } ) }                                   ......(i)
    Now, we will check by options.
    Option C, satisfies (i)
    Hence, n=2n=2
  • Question 2
    1 / -0
    Let f(x)f(x)={x2,for   x<0x2+8, for  x0 \begin{cases} -x^2, {for  \   x<0} \\x^2+8,  {for \   x\geq 0}  \end{cases}. Then xx-intercept of the line, that is, the tangent to the graph of f(x)f(x) in both the intervals of its domain, is
    Solution

    At any point (k,k2+8)(k, k^2+8) on y=x2+8y=x^2+8, the slope of tangent is dydxx=k=2k \dfrac{dy}{dx}|_{x=k}=2k.....(1)

    Similarly, at any point (p,p2)(p, -p^2) on y=x2y=-x^2, the slope of tangent is dydxx=p=2p \dfrac{dy}{dx}|_{x=p}=-2p....(2)

    For common tangent, 2k=2pk=p2k=-2p \Rightarrow k=-p

    Hence, the coordinates of point on common tangent and on y=x2y=-x^2 can be written as (k,k2)(-k, -k^2) as shown in figure.

    So, slope of common tangent is 8+k2(k2)k(k)=8+2k22k \dfrac{8+k^2-(-k^2)}{k-(-k)}=\dfrac{8+2k^2}{2k}

    From (1), slope is also equal to 2k2k.

    Hence, 8+2k22k=2k\dfrac{8+2k^2}{2k}=2k

    Solving, we get k=±2k= \pm 2.

    Discarding negative value (since 'k' is positive as defined in the function), we get k=2k=2

    Hence, slope of common tangent is 2k=42k=4

    The point common to tangent and y=x2+8y=x^2+8 is (2,12)(2,12)

    Hence, equation of common tangent is y12=4(x2)y-12=4(x-2)

    To find xx intercept, substitute y=0y=0 in the above equation.

    We get xx intercept=1=-1

  • Question 3
    1 / -0
    A function y=f(x)y=f(x) has a second-order derivative f(x)=6(x1)f''(x)=6(x-1). If its graph passes through the point (2,1)(2,1) and at the point tangent to the graph is y=3x5y=3x-5, then the value of f(0)f(0) is 
    Solution
    f(x)=6x6f''(x)=6x-6
    f(x)dx=(6x6)dx\int { f''(x)dx } =\int { (6x-6)dx }
    f(x)=3x26x+C\Rightarrow f'(x)=3x^{2}-6x+C
    Since, it passes through (2,1) and tangent is y=3x5y=3x-5
    C=3\Rightarrow C=3
    So, f(x)=3x26x+3f'(x)=3x^{2}-6x+3
    f(x)dx=(3x26x+3)dx\int { f'(x)dx } =\int { (3{ x }^{ 2 }-6x+3)dx }
    f(x)=x33x2+3x+C1\Rightarrow f(x)=x^{3}-3x^{2}+3x+C_1
    Since, it passes through (2,1) (2,1)
    C1=1\Rightarrow C_1=-1
    Hence, f(x)=x33x2+3x1f(x)=x^{3}-3x^{2}+3x-1
    f(0)=1f(0)=-1
  • Question 4
    1 / -0
    The tangent of the acute angle between the curves y=x21y=|x^2-1| and y=7x2y=\sqrt {7-x^2} at their points of intersection is
    Solution
    The given curves are y=x21y=|x^{2}-1| and y=7x2y=\sqrt{7-x^2}
    To find the point of intersection, let us equate both the curves.  
    x21=7x2|x^{2}-1|=\sqrt{7-x^2}
    Squaring on both sides gives us x4x26=0x^{4}-x^{2}-6=0
    (x23)(x2+2)=0(x^2-3)(x^2+2) =0
    On solving above quadratic equation, we get x2=3x^{2}=3
    The point of intersection is (±3,2)\left(\pm \sqrt{3},2\right)
    The slope of the tangent to y=x21y=|x^{2}-1| at the point (3,2)\left( \sqrt{3},2\right)is
    m1=dydx=2x=23m_{1}=\displaystyle\dfrac{dy}{dx}=2x=2\sqrt{3}
    The slope of tangent to y=7x2y=\sqrt{7-x^2} at the point (3,2)\left(\sqrt{3},2\right)is
    m2=dydx=x7x2=32m_{2}=\displaystyle\dfrac{dy}{dx}=\dfrac{-x}{\sqrt{7-x^2}}=\dfrac{-\sqrt{3}}{2}
    Let θ\theta be the acute angle between the two tangents. 
    tanθ=m1m21+m1m2\displaystyle\tan\theta = \dfrac{m_{1}-m_{2}}{1+m_{1}m_{2}} 
    tanθ=534\Rightarrow \displaystyle\tan\theta = \dfrac{-5\sqrt{3}}{4}
    \thereforeThe tangent of the acute angle between the curves is 534\displaystyle\dfrac{5\sqrt{3}}{4}
    Hence, option C is correct. 
  • Question 5
    1 / -0
    The angle made by the tangent of the curve x=a(t+sintcost)x=a (t+\sin t \cos t), y=a(1+sint)2y=a(1+sint)^2 with the xaxisx- axis at any point on it is
    Solution
    x=a(t+sintcost)x=a (t+sin t cos t)
    dxdt=2acos2t\dfrac{dx}{dt}=2acos^{2}t
    y=a(1+sint)2y=a(1+sint)^2
    dydt=2a(cost+costsint)\dfrac{dy}{dt}=2a(cost+costsint)
    dydx=1+sintcost\Rightarrow \displaystyle \dfrac{dy}{dx}=\dfrac{1+sint}{cost}
                =(cost2+sint2)2cos2t2sin2t2\displaystyle  = \dfrac{(cos\dfrac{t}{2}+sin\dfrac{t}{2})^{2}}{cos^{2}\dfrac{t}{2}-sin^{2}\dfrac{t}{2}}
                 =1+tant21tant2\displaystyle = \dfrac{1+tan{\dfrac{t}{2}}}{1-tan{\dfrac{t}{2}}}
                 =tan(π4+t2)\displaystyle =tan(\dfrac{\pi}{4}+\dfrac{t}{2})
    Slope of tangent to the curve =tan(π4+t2)= tan(\dfrac{\pi}{4}+\dfrac{t}{2})
    So, the angle made by the tangent to the curve with the x-axis =π4+t2=\dfrac{\pi}{4}+\dfrac{t}{2} or 14(π+2t)\dfrac{1}{4}(\pi+2t)

  • Question 6
    1 / -0
    The abscissas of points PP and QQ on the curve y=ex+exy=e^x+e^{-x} such that tangents at PP and QQ make 6060^{\circ} with the xx-axis are
    Solution
    y=ex+exy=e^{x}+e^{-x}
    dydx=exex=e2x1ex\displaystyle\frac{dy}{dx}=e^{x}-e^{-x}=\frac{e^{2x}-1}{e^{x}}
    Let P(x1,y1)(x_{1},y_{1}) and Q(x2,y2)(x_2,y_2) be the points on the given curve.
    Slope of tangent at P is m1=e2x11ex1\displaystyle m_1=\frac{e^{2x_{1}}-1}{e^{x_{1}}}
    3=e2x11ex1\Rightarrow \displaystyle \sqrt{3}=\frac{e^{2x_{1}}-1}{e^{x_{1}}}
    e2x13ex1=0\displaystyle\Rightarrow e^{2x_1}-\sqrt{3}e^{x}-1=0
    (ex132)2=74\displaystyle\Rightarrow (e^{x_1}-\frac{\sqrt{3}}{2})^{2}=\frac{7}{4}
    ex1=±72+32\displaystyle\Rightarrow e^{x_1}=\pm\frac{\sqrt{7}}{2}+\frac{\sqrt{3}}{2}
    x1=ln(72+32)\displaystyle\Rightarrow {x_1}=ln{(\frac{\sqrt{7}}{2}+\frac{\sqrt{3}}{2})} as logarithm of negative numbers is not defined.
    Similarly, x2=ln(72+32)\displaystyle\Rightarrow {x_2}=ln{(\frac{\sqrt{7}}{2}+\frac{\sqrt{3}}{2})} as it makes same angle,60060^{0} with x-axis.
  • Question 7
    1 / -0
    The point on the curve y2=x,y^{2} = x , the tangent at which makes an angle of 45045^{0} with positive direction of xx - axis will be given by
    Solution
    Given equation of curve is y2=xy^{2} = x
    dydx=12y\displaystyle \frac{dy}{dx}=\frac{1}{2y}
    Slope of tangent =12y=\dfrac{1}{2y}
    Also, given slope of tangent =tan 45=tan 45^{\circ}
    12y=1y=12\displaystyle\frac{1}{2y}=1\Rightarrow y=\frac{1}{2}
    x=14\displaystyle \Rightarrow x=\frac{1}{4}
    Hence, the required point is  (14,12)\left ( \dfrac{1}{4},\dfrac{1}{2} \right )
  • Question 8
    1 / -0
    If the curve represented parametrically by the equations x=2lncott+1x=2 \ln\cot t+1 and y=tant+cotty=\tan t+ \cot t
    Solution
    x=2lncott+1x=2 \ln\cot t+1
    dxdt=2cosec2tcott=2sintcost\displaystyle \frac{dx}{dt}=-\frac{2cosec^{2}t}{\cot t}=-\frac{2}{\sin t\cos t}
     y=tant+cotty=\tan t+ \cot t
    dydt=sec2tcosec2t=sin2tcos2tsin2tcos2t\displaystyle \frac{dy}{dt}=sec^{2}t-cosec^{2}t=\frac{sin^{2}t-cos^{2}t}{sin^{2}t cos^{2}t}
     dydx=sin2tcos2tsin2t\Rightarrow \displaystyle \frac{dy}{dx}=-\frac{sin^{2}t-cos^{2}t}{sin2t}
     dydx=cot2t\Rightarrow \displaystyle \frac{dy}{dx}=\cot 2t
    Slope of tangent at t=π4t=\dfrac{\pi}{4} is 0.
    Hence, tangent is parallel to x-axis.
  • Question 9
    1 / -0
    A curve is represented by the equations, x=sec2t\displaystyle x = \sec^2t and y=cotty =\cot t, where tt is a parameter. If the tangent at the point PP on the curve where t=π4\displaystyle t = \dfrac{\pi}{4} meets the curve again at the point QQ then PQ|PQ| is equal to
    Solution
    x=sec2tx=\sec^{2}t
    y=cotty=\cot t
    dydx=csc2t2sec2ttant=cot3t2\dfrac{dy}{dx}=-\dfrac{\csc^{2}t}{2\sec^{2}t\cdot\tan t}=-\dfrac{\cot^{3}t}{2}

    Now,
    dydxt=450=12\left.\dfrac{dy}{dx}\right|_{t=45^{0}}=-\dfrac{1}{2} 
    xt=450=2\left.x\right|_{t=45^{0}}=2
    yt=450=1\left.y\right|_{t=45^{0}}=1

    Hence the equation of the tangent will be 
    y1=12(x2)2y2=x+2 x+2y=4y-1=-\dfrac{1}{2}(x-2)\Rightarrow2y-2=-x+2\Rightarrow x+2y=4 ...(i)

    Now,
    sec2t=1+tan2t\sec^{2}t=1+\tan^{2}t
    sec2t=1+1cot2t\sec^{2}t=1+\dfrac{1}{\cot^{2}t}
    Or 
    x=1+1y2xy2=y2+1x=1+\dfrac{1}{y^{2}}\Rightarrow xy^{2}=y^{2}+1 is the equation of curve.

    Solving the equation of tangent and equation of curve we get 
    42y=1+1y24-2y=1+\dfrac{1}{y^{2}}
    Or 
    4y22y3=y2+12y33y2+1=04y^{2}-2y^{3}=y^{2}+1\Rightarrow2y^{3}-3y^{2}+1=0
    y=12y=-\dfrac{1}{2} and y=1y=1
    For y=1;x=2y=1; x= 2
    For y=12;x=5y=-\dfrac{1}{2}; x = 5

    Hence,
    Q=(5,12)Q=\left(5,-\dfrac{1}{2}\right) and P=(2,1)P=(2,1)
    PQ=352\therefore PQ=\dfrac{3\sqrt{5}}{2}.
  • Question 10
    1 / -0
    The x-intercept of the tangent at any arbitrary point of the curve ax2+by2=1\displaystyle \frac {a}{x^2} + \frac {b}{y^2} = 1 is proportional to:
    Solution
    let P(a cosθ  ,b sinθ   ) P \left( \dfrac { \sqrt { a }  }{ \cos { \theta  }  } ,\dfrac { \sqrt { b }  }{ \sin { \theta  }  }  \right)  be any point of curve ax2+by2=1\dfrac { a }{ x^{ 2 } } +\dfrac { b }{ y^{ 2 } } =1
    2ax32by3dydx=0\dfrac { -2a }{ x^{ 3 } } -\dfrac { 2b }{ y^{ 3 } } \dfrac { dy }{ dx } =0
    dydx \dfrac { dy }{ dx } at point P=ba cot3θ  =-\sqrt { \dfrac { b }{ a }  } \cot ^{ 3 }{ \theta  } 
    Equation of tangent at point P: yb sinθ  =ba cot3θ (xa cosθ   ) \displaystyle y-\frac { \sqrt { b }  }{ \sin { \theta  }  } =-\sqrt { \frac { b }{ a }  } \cot ^{ 3 }{ \theta  } \left( x-\frac { \sqrt { a }  }{ \cos { \theta  }  }  \right) 
    for X-intercept put x=0x=0
    0b sinθ  =ba cot3θ (xa cosθ   ) \displaystyle 0-\frac { \sqrt { b }  }{ \sin { \theta  }  } =-\sqrt { \frac { b }{ a }  } \cot ^{ 3 }{ \theta  } \left( x-\frac { \sqrt { a }  }{ \cos { \theta  }  }  \right) 
    x=a(sin2θ  cos3θ  +1cosθ   )=a cos3θ   \displaystyle \Rightarrow x=\sqrt { a } \left( \frac { \sin ^{ 2 }{ \theta  }  }{ \cos ^{ 3 }{ \theta  }  } +\frac { 1 }{ \cos { \theta  }  }  \right) =\frac { \sqrt { a }  }{ \cos ^{ 3 }{ \theta  }  } 
    Therefore, X-intercept is proportional to cube of abcissa.

    Ans: C
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now