Self Studies

Tangents and its Equations Test 48

Result Self Studies

Tangents and its Equations Test 48
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    At the point $$P(a,a'')$$ on the graph of $$y=x^n$$, $$(n \epsilon N)$$, in the first quadrant , a normal is drawn. The normal intersects the $$y$$-axis at the point $$(0,b)$$. If $$\lim_{a\rightarrow 0}b=\displaystyle \frac{1}{2}$$, then n equals
    Solution
    $$y=x^{n}$$
    $$\displaystyle \dfrac{dy}{dx}=nx^{n-1}$$
    $$\displaystyle (\dfrac{dy}{dx})_{(a,a^{n})}=na^{n-1}$$
    Slope of normal at P, $$=-\dfrac{1}{na^{n-1}}$$
    Equation of normal at P is 
    $$ y-{ a }^{ n }=-\dfrac { 1 }{ n{ a }^{ n-1 } } (x-a)$$
    Since, it intersects y-axis at (0,b)
    $$\Rightarrow b-a^{n}=\dfrac{a}{na^{n-1}}$$
    $$\Rightarrow \lim _{ a\rightarrow 0 }{ b- } \lim _{ a\rightarrow 0 }{ { a }^{ n } } =\lim _{ a\rightarrow 0 }{ (\dfrac { a }{ n{ a }^{ n-1 } } ) } $$
    $$\Rightarrow \dfrac { 1 }{ 2 } =\lim _{ a\rightarrow 0 }{ (\dfrac { a }{ n{ a }^{ n-1 } } ) }  $$                                 ......(i)
    Now, we will check by options.
    Option C, satisfies (i)
    Hence, $$n=2$$
  • Question 2
    1 / -0
    Let $$f(x)$$=$$\begin{cases} -x^2, {for  \   x<0} \\x^2+8,  {for \   x\geq 0}  \end{cases}$$. Then $$x$$-intercept of the line, that is, the tangent to the graph of $$f(x)$$ in both the intervals of its domain, is
    Solution

    At any point $$(k, k^2+8)$$ on $$y=x^2+8$$, the slope of tangent is $$ \dfrac{dy}{dx}|_{x=k}=2k$$.....(1)

    Similarly, at any point $$(p, -p^2)$$ on $$y=-x^2$$, the slope of tangent is $$ \dfrac{dy}{dx}|_{x=p}=-2p$$....(2)

    For common tangent, $$2k=-2p \Rightarrow k=-p$$

    Hence, the coordinates of point on common tangent and on $$y=-x^2$$ can be written as $$(-k, -k^2)$$ as shown in figure.

    So, slope of common tangent is $$ \dfrac{8+k^2-(-k^2)}{k-(-k)}=\dfrac{8+2k^2}{2k}$$

    From (1), slope is also equal to $$2k$$.

    Hence, $$\dfrac{8+2k^2}{2k}=2k$$

    Solving, we get $$k= \pm 2$$.

    Discarding negative value (since 'k' is positive as defined in the function), we get $$k=2$$

    Hence, slope of common tangent is $$2k=4$$

    The point common to tangent and $$y=x^2+8$$ is $$(2,12)$$

    Hence, equation of common tangent is $$y-12=4(x-2)$$

    To find $$x$$ intercept, substitute $$y=0$$ in the above equation.

    We get $$x$$ intercept$$=-1$$

  • Question 3
    1 / -0
    A function $$y=f(x)$$ has a second-order derivative $$f''(x)=6(x-1)$$. If its graph passes through the point $$(2,1)$$ and at the point tangent to the graph is $$y=3x-5$$, then the value of $$f(0)$$ is 
    Solution
    $$f''(x)=6x-6$$
    $$\int { f''(x)dx } =\int { (6x-6)dx } $$
    $$\Rightarrow f'(x)=3x^{2}-6x+C$$
    Since, it passes through (2,1) and tangent is $$y=3x-5$$
    $$\Rightarrow C=3$$
    So, $$f'(x)=3x^{2}-6x+3$$
    $$\int { f'(x)dx } =\int { (3{ x }^{ 2 }-6x+3)dx } $$
    $$\Rightarrow f(x)=x^{3}-3x^{2}+3x+C_1$$
    Since, it passes through $$ (2,1)$$
    $$\Rightarrow C_1=-1$$
    Hence, $$f(x)=x^{3}-3x^{2}+3x-1$$
    $$f(0)=-1$$
  • Question 4
    1 / -0
    The tangent of the acute angle between the curves $$y=|x^2-1| $$ and $$y=\sqrt {7-x^2}$$ at their points of intersection is
    Solution
    The given curves are $$y=|x^{2}-1|$$ and $$y=\sqrt{7-x^2}$$
    To find the point of intersection, let us equate both the curves.  
    $$|x^{2}-1|=\sqrt{7-x^2}$$
    Squaring on both sides gives us $$x^{4}-x^{2}-6=0$$
    $$(x^2-3)(x^2+2) =0 $$
    On solving above quadratic equation, we get $$x^{2}=3$$
    The point of intersection is $$\left(\pm \sqrt{3},2\right)$$
    The slope of the tangent to $$y=|x^{2}-1|$$ at the point $$\left( \sqrt{3},2\right)$$is
    $$m_{1}=\displaystyle\dfrac{dy}{dx}=2x=2\sqrt{3}$$
    The slope of tangent to $$y=\sqrt{7-x^2}$$ at the point $$\left(\sqrt{3},2\right)$$is
    $$m_{2}=\displaystyle\dfrac{dy}{dx}=\dfrac{-x}{\sqrt{7-x^2}}=\dfrac{-\sqrt{3}}{2}$$
    Let $$\theta$$ be the acute angle between the two tangents. 
    $$\displaystyle\tan\theta = \dfrac{m_{1}-m_{2}}{1+m_{1}m_{2}}$$ 
    $$\Rightarrow \displaystyle\tan\theta = \dfrac{-5\sqrt{3}}{4}$$
    $$\therefore$$The tangent of the acute angle between the curves is $$\displaystyle\dfrac{5\sqrt{3}}{4}$$ . 
    Hence, option C is correct. 
  • Question 5
    1 / -0
    The angle made by the tangent of the curve $$x=a (t+\sin t \cos t)$$, $$y=a(1+sint)^2$$ with the $$x- axis$$ at any point on it is
    Solution
    $$x=a (t+sin t cos t)$$
    $$\dfrac{dx}{dt}=2acos^{2}t$$
    $$y=a(1+sint)^2$$
    $$\dfrac{dy}{dt}=2a(cost+costsint)$$
    $$\Rightarrow \displaystyle \dfrac{dy}{dx}=\dfrac{1+sint}{cost}$$
               $$\displaystyle  = \dfrac{(cos\dfrac{t}{2}+sin\dfrac{t}{2})^{2}}{cos^{2}\dfrac{t}{2}-sin^{2}\dfrac{t}{2}}$$
                 $$\displaystyle = \dfrac{1+tan{\dfrac{t}{2}}}{1-tan{\dfrac{t}{2}}}$$
                 $$\displaystyle =tan(\dfrac{\pi}{4}+\dfrac{t}{2})$$
    Slope of tangent to the curve $$= tan(\dfrac{\pi}{4}+\dfrac{t}{2})$$
    So, the angle made by the tangent to the curve with the x-axis $$=\dfrac{\pi}{4}+\dfrac{t}{2}$$ or $$\dfrac{1}{4}(\pi+2t)$$

  • Question 6
    1 / -0
    The abscissas of points $$P$$ and $$Q$$ on the curve $$y=e^x+e^{-x}$$ such that tangents at $$P$$ and $$Q$$ make $$60^{\circ}$$ with the $$x$$-axis are
    Solution
    $$y=e^{x}+e^{-x}$$
    $$\displaystyle\frac{dy}{dx}=e^{x}-e^{-x}=\frac{e^{2x}-1}{e^{x}}$$
    Let P$$(x_{1},y_{1})$$ and Q$$(x_2,y_2)$$ be the points on the given curve.
    Slope of tangent at P is $$\displaystyle m_1=\frac{e^{2x_{1}}-1}{e^{x_{1}}}$$
    $$\Rightarrow \displaystyle \sqrt{3}=\frac{e^{2x_{1}}-1}{e^{x_{1}}}$$
    $$\displaystyle\Rightarrow e^{2x_1}-\sqrt{3}e^{x}-1=0$$
    $$\displaystyle\Rightarrow (e^{x_1}-\frac{\sqrt{3}}{2})^{2}=\frac{7}{4}$$
    $$\displaystyle\Rightarrow e^{x_1}=\pm\frac{\sqrt{7}}{2}+\frac{\sqrt{3}}{2}$$
    $$\displaystyle\Rightarrow {x_1}=ln{(\frac{\sqrt{7}}{2}+\frac{\sqrt{3}}{2})}$$ as logarithm of negative numbers is not defined.
    Similarly, $$\displaystyle\Rightarrow {x_2}=ln{(\frac{\sqrt{7}}{2}+\frac{\sqrt{3}}{2})}$$ as it makes same angle,$$60^{0}$$ with x-axis.
  • Question 7
    1 / -0
    The point on the curve $$y^{2} = x ,$$ the tangent at which makes an angle of $$45^{0}$$ with positive direction of $$x -$$ axis will be given by
    Solution
    Given equation of curve is $$y^{2} = x$$
    $$\displaystyle \frac{dy}{dx}=\frac{1}{2y}$$
    Slope of tangent $$=\dfrac{1}{2y}$$
    Also, given slope of tangent $$=tan 45^{\circ}$$
    $$\displaystyle\frac{1}{2y}=1\Rightarrow y=\frac{1}{2}$$
    $$\displaystyle \Rightarrow x=\frac{1}{4}$$
    Hence, the required point is  $$\left ( \dfrac{1}{4},\dfrac{1}{2} \right )$$
  • Question 8
    1 / -0
    If the curve represented parametrically by the equations $$x=2 \ln\cot t+1$$ and $$y=\tan t+ \cot t$$
    Solution
    $$x=2 \ln\cot t+1$$
    $$\displaystyle \frac{dx}{dt}=-\frac{2cosec^{2}t}{\cot t}=-\frac{2}{\sin t\cos t}$$
     $$y=\tan t+ \cot t$$
    $$\displaystyle \frac{dy}{dt}=sec^{2}t-cosec^{2}t=\frac{sin^{2}t-cos^{2}t}{sin^{2}t cos^{2}t}$$
    $$\Rightarrow \displaystyle \frac{dy}{dx}=-\frac{sin^{2}t-cos^{2}t}{sin2t}$$
    $$\Rightarrow \displaystyle \frac{dy}{dx}=\cot 2t$$
    Slope of tangent at $$t=\dfrac{\pi}{4}$$ is 0.
    Hence, tangent is parallel to x-axis.
  • Question 9
    1 / -0
    A curve is represented by the equations, $$\displaystyle x = \sec^2t$$ and $$y =\cot t$$, where $$t$$ is a parameter. If the tangent at the point $$P$$ on the curve where $$\displaystyle t = \dfrac{\pi}{4}$$ meets the curve again at the point $$Q$$ then $$|PQ|$$ is equal to
    Solution
    $$x=\sec^{2}t$$
    $$y=\cot t$$
    $$\dfrac{dy}{dx}=-\dfrac{\csc^{2}t}{2\sec^{2}t\cdot\tan t}=-\dfrac{\cot^{3}t}{2}$$

    Now,
    $$\left.\dfrac{dy}{dx}\right|_{t=45^{0}}=-\dfrac{1}{2}$$ 
    $$\left.x\right|_{t=45^{0}}=2$$
    $$\left.y\right|_{t=45^{0}}=1$$

    Hence the equation of the tangent will be 
    $$y-1=-\dfrac{1}{2}(x-2)\Rightarrow2y-2=-x+2\Rightarrow x+2y=4$$ ...(i)

    Now,
    $$\sec^{2}t=1+\tan^{2}t$$
    $$\sec^{2}t=1+\dfrac{1}{\cot^{2}t}$$
    Or 
    $$x=1+\dfrac{1}{y^{2}}\Rightarrow xy^{2}=y^{2}+1$$ is the equation of curve.

    Solving the equation of tangent and equation of curve we get 
    $$4-2y=1+\dfrac{1}{y^{2}}$$
    Or 
    $$4y^{2}-2y^{3}=y^{2}+1\Rightarrow2y^{3}-3y^{2}+1=0$$
    $$y=-\dfrac{1}{2}$$ and $$y=1$$
    For $$y=1; x= 2$$
    For $$y=-\dfrac{1}{2}; x = 5$$

    Hence,
    $$Q=\left(5,-\dfrac{1}{2}\right)$$ and $$P=(2,1)$$
    $$\therefore PQ=\dfrac{3\sqrt{5}}{2}$$.
  • Question 10
    1 / -0
    The x-intercept of the tangent at any arbitrary point of the curve $$\displaystyle \frac {a}{x^2} + \frac {b}{y^2} = 1$$ is proportional to:
    Solution
    let $$P \left( \dfrac { \sqrt { a }  }{ \cos { \theta  }  } ,\dfrac { \sqrt { b }  }{ \sin { \theta  }  }  \right) $$ be any point of curve $$\dfrac { a }{ x^{ 2 } } +\dfrac { b }{ y^{ 2 } } =1$$
    $$\dfrac { -2a }{ x^{ 3 } } -\dfrac { 2b }{ y^{ 3 } } \dfrac { dy }{ dx } =0$$
    $$\dfrac { dy }{ dx } $$at point P$$=-\sqrt { \dfrac { b }{ a }  } \cot ^{ 3 }{ \theta  } $$
    Equation of tangent at point P: $$\displaystyle y-\frac { \sqrt { b }  }{ \sin { \theta  }  } =-\sqrt { \frac { b }{ a }  } \cot ^{ 3 }{ \theta  } \left( x-\frac { \sqrt { a }  }{ \cos { \theta  }  }  \right) $$
    for X-intercept put $$x=0$$
    $$\displaystyle 0-\frac { \sqrt { b }  }{ \sin { \theta  }  } =-\sqrt { \frac { b }{ a }  } \cot ^{ 3 }{ \theta  } \left( x-\frac { \sqrt { a }  }{ \cos { \theta  }  }  \right) $$
    $$\displaystyle \Rightarrow x=\sqrt { a } \left( \frac { \sin ^{ 2 }{ \theta  }  }{ \cos ^{ 3 }{ \theta  }  } +\frac { 1 }{ \cos { \theta  }  }  \right) =\frac { \sqrt { a }  }{ \cos ^{ 3 }{ \theta  }  } $$
    Therefore, X-intercept is proportional to cube of abcissa.

    Ans: C
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now