At any point ( k , k 2 + 8 ) (k, k^2+8) ( k , k 2 + 8 ) on y = x 2 + 8 y=x^2+8 y = x 2 + 8 , the slope of tangent is d y d x ∣ x = k = 2 k \dfrac{dy}{dx}|_{x=k}=2k d x d y ∣ x = k = 2 k .....(1)
Similarly, at any point ( p , − p 2 ) (p, -p^2) ( p , − p 2 ) on y = − x 2 y=-x^2 y = − x 2 , the slope of tangent is d y d x ∣ x = p = − 2 p \dfrac{dy}{dx}|_{x=p}=-2p d x d y ∣ x = p = − 2 p ....(2)
For common tangent, 2 k = − 2 p ⇒ k = − p 2k=-2p \Rightarrow k=-p 2 k = − 2 p ⇒ k = − p
Hence, the coordinates of point on common tangent and on y = − x 2 y=-x^2 y = − x 2 can be written as ( − k , − k 2 ) (-k, -k^2) ( − k , − k 2 ) as shown in figure.
So, slope of common tangent is 8 + k 2 − ( − k 2 ) k − ( − k ) = 8 + 2 k 2 2 k \dfrac{8+k^2-(-k^2)}{k-(-k)}=\dfrac{8+2k^2}{2k} k − ( − k ) 8 + k 2 − ( − k 2 ) = 2 k 8 + 2 k 2
From (1), slope is also equal to 2 k 2k 2 k .
Hence, 8 + 2 k 2 2 k = 2 k \dfrac{8+2k^2}{2k}=2k 2 k 8 + 2 k 2 = 2 k
Solving, we get k = ± 2 k= \pm 2 k = ± 2 .
Discarding negative value (since 'k' is positive as defined in the function), we get k = 2 k=2 k = 2
Hence, slope of common tangent is 2 k = 4 2k=4 2 k = 4
The point common to tangent and y = x 2 + 8 y=x^2+8 y = x 2 + 8 is ( 2 , 12 ) (2,12) ( 2 , 12 )
Hence, equation of common tangent is y − 12 = 4 ( x − 2 ) y-12=4(x-2) y − 12 = 4 ( x − 2 )
To find x x x intercept, substitute y = 0 y=0 y = 0 in the above equation.
We get x x x intercept= − 1 =-1 = − 1