Self Studies

Tangents and its Equations Test 5

Result Self Studies

Tangents and its Equations Test 5
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The equation of the normal to the curve y4=ax3{ y }^{ 4 }=a{ x }^{ 3 } at (a,a)\left( a,a \right) is
    Solution
    Given curve is y4=ax3{ y }^{ 4 }=a{ x }^{ 3 }
    On differentiating with respect to xx, we get
    4y3dydx=3ax24{ y }^{ 3 }\dfrac { dy }{ dx } =3a{ x }^{ 2 }
    (dydx ) (a,a) =3a34a3=34\Rightarrow { \left( \dfrac { dy }{ dx }  \right)  }_{ \left( a,a \right)  }=\dfrac { 3{ a }^{ 3 } }{ 4{ a }^{ 3 } } =\dfrac { 3 }{ 4 }
    \therefore Equation of normal at point (a,a)\left( a,a \right) is
    ya=43(xa)y-a=-\dfrac { 4 }{ 3 } \left( x-a \right)
    4x+3y=7a\Rightarrow 4x+3y=7a
  • Question 2
    1 / -0
    If tangent to the curve x=at2,y=2at\displaystyle x={ at }^{ 2 },y=2at is perpendicular to xx-axis, then its point of contact is:
    Solution
    We have, x=at2dxdt=2atx=at^2\Rightarrow \dfrac{dx}{dt}=2at
    And y=2atdydt=2ay=2at\Rightarrow \dfrac{dy}{dt}=2a
    dydx=1t=\therefore \dfrac{dy}{dx}=\dfrac{1}{t}=\infty, for tangent to the curve perpendicular to xx-axis
    t=0\Rightarrow t = 0
    so the point of contact is (at2,2at)=(0,0)(at^2,2at)=(0,0)
  • Question 3
    1 / -0
    The slope of the normal to the curve y=2x2+3sinxy = 2x^2+ 3 \sin x at x=0x = 0 is. 
    Solution
    y=2x2+3sinxy = 2x^2+ 3 \sin x
    dydx=4x+3cosx\cfrac{dy}{dx} = 4x+3\cos x
    Thus slope of tangent at x=0x=0 is 4(0)+3cos0=34(0)+3\cos 0=3
    Hence slope of normal at the same point is 1m=13-\cfrac{1}{m}=-\cfrac{1}{3}
  • Question 4
    1 / -0
    The slope of the tangent to the curve y=0xdt1+t3y=\displaystyle\int_{0}^{x}\dfrac{dt}{1+t^3} at the point where x=1 is 
    Solution
    dydx=11+x3\dfrac{dy}{dx}=\dfrac{1}{1+x^{3}}

    m=(dydx)x=1=11+1=12m=\left ( \dfrac{dy}{dx} \right )x=1=\dfrac{1}{1+1}=\dfrac{1}{2}
  • Question 5
    1 / -0
    The equation of the tangent to the curve x=t,y=t1tx=\sqrt{t}, y=t-\dfrac{1}{\sqrt{t}} at t=4t=4 is:
    Solution
    Given, x=tx=\sqrt{t}.......(1), y=t1ty=t-\dfrac{1}{\sqrt{t}}........(2).
    When t=4t=4,x=2,y=412=72x=2,y=4-\dfrac{1}{2}=\dfrac{7}{2}.
    Using (1)(1) in (2)(2) we get,
    y=x21xy=x^2-\dfrac{1}{x}.
    dydx=2x+1x2\Rightarrow \dfrac{dy}{dx}=2x+\dfrac{1}{x^2}
    dydxx=2=174\Rightarrow \dfrac{dy}{dx}\Big|_{x=2}=\dfrac{17}{4}.
    Now, equation of tangent at (2,72)\left(2,\dfrac{7}{2}\right) is 
    y72=174(x2)y-\dfrac{7}{2}=\dfrac{17}{4}(x-2)
    or, 17x4y=2017x-4y=20.
  • Question 6
    1 / -0
    The chord of the curve y=x2+2ax+by = x^{2} + 2ax + b, joining the points where x=αx = \alpha and x=βx = \beta, is parallel to the tangent to the curve at abscissa x=x =
    Solution
    Given curve is y=x2+2ax+by=x^{2}+2ax+b
    Differentiate above equation w.r.t. xx we get
    dydx=2x+2a\dfrac{dy}{dx}=2x+2a is the equation of tangent to the curve
    But tangent to the curve is parallel to the chord of the curve which joins the points x=αx=\alpha and x=βx=\beta
    \therefore Tangent to this curve is =(α+β)+2a=(\alpha+\beta)+2a
    2x+2a=(β+α)+2a\therefore 2x + 2a = (\beta + \alpha) + 2a
        x=α+β2\implies x = \dfrac {\alpha + \beta}{2}
  • Question 7
    1 / -0
    Consider the curve y=e2xy = e^{2x}.What is the slope of the tangent to the curve at (0, 1) ?
    Solution
    We know that slope of tangent to a curve y=f(x)y=f(x) at a point (x1,y1)(x_1,y_1) equals f(x1)f^{'}(x_1)
    \Rightarrow Slope of tangent to the curve y=e2xy=e^{2x} equals d(e2x)dx=2e2x\cfrac{d(e^{2x})}{dx} =2e^{2x} 
    \Rightarrow Slope of tangent at (0,1)=f(0)=2(0,1)=f^{'}(0)=2

  • Question 8
    1 / -0
    If normal is drawn to y2=12x{ y }^{ 2 }=12x making an angle 45o{45}^{o} with the axis then the foot of the normal is
    Solution
    Given that,
    y2=12x (1){y^2} = 12x -  - \left( 1 \right)
    Diff. w.r.t. to xx
    2ydydx=122y\dfrac{{dy}}{{dx}} = 12
    ydydx=6   (2)y\dfrac{{dy}}{{dx}} = 6 -  -  -  - \left( 2 \right)
    Slope tangent
    dydx=tan45\dfrac{{dy}}{{dx}} = \tan 45
    m=1m = 1
    Slope at Normal from (2)(2)
    y(1)=6 \Rightarrow y\left( { - 1} \right) = 6
    y=6 \Rightarrow y =- 6
    x=3\therefore x = 3
    Point =(3,6)=(3,-6)
    Option (A)(A) is correct answer.
  • Question 9
    1 / -0
    The equation of the normal to the curve y=x+2y=-\sqrt { x } +2 at the point of its intersection with the bisector of the first quadrant is
    Solution
    Given
    y=x+2....(i)y=-\sqrt { x } +2....(i)
    And bisector of first quadrant is
    y=xy=x ..... (ii)(ii)
    On solving Eqs(i) and (ii) we get
    x=1,4x=1,4
    \therefore From Eq (i)
    Points are (1,1)(1,1) and (4,0)(4,0)
    But (4,0)(4,0) not satisfy Eq (ii)
    \therefore Point (1,1)(1,1) is only point of intersection of curve (i) and line (ii)
    Now, slope of tangent of curve (i) is
    dydx=12x \cfrac { dy }{ dx } =\cfrac { -1 }{ 2\sqrt { x }  }
    \therefore Slope of tangent at point (1,1)(1,1) is
    dydx  (1,1)=12{ \left| \cfrac { dy }{ dx }  \right|  }_{ (1,1) }=\cfrac { -1 }{ 2 }
    and 1dydx  (1,1)=112 =2\cfrac { -1 }{ { \left| \cfrac { dy }{ dx }  \right|  }_{ (1,1) } } =\cfrac { -1 }{ \cfrac { -1 }{ 2 }  } =2\quad
    \therefore Equation of the normal to the curve at point (1,1)(1,1) will be
    y1=2(x1)2xy1=0y-1=2(x-1)\Rightarrow 2x-y-1=0
  • Question 10
    1 / -0
    Equation of normal drawn to the graph of the function defined as f(x)=sinx2 x,x0f\left( x \right) =\dfrac { \sin { { x }^{ 2 } }  }{ x } ,x\neq 0 and f(0)=0f\left( 0 \right) =0 at the origin is
    Solution
    Differentiating f(x)f(x) w.r.t xx, we get
    f(x)=xcos(x2).2xsinx2.1x2 f'(x)=\dfrac{x\cos(x^2).2x -\sin x^2.1}{x^2}
    f(x)=2x2cosx2sinx2x2 \Rightarrow f'(x)= \dfrac{2x^2\cos x^2- \sin x^2}{x^2}

    Find the value of f(x)f'(x) at x=0x=0, we get
    f(x)f'(x) is in 00\dfrac{0}{0} indeterminate form

    Apply L'Hospital rule 
    limx0f(x)=2xcosx24x2sinx22x \lim_{x \to0}f'(x)= \dfrac{2x\cos x^2-4x^2\sin x^2}{2x}
    limx0f(x)=2x×(cosx22x2sinx2)2x \Rightarrow \lim_{x\to0} f'(x)=\dfrac{2x\times(\cos x^2-2x^2\sin x^2)}{2x}
    limx0cosx22x2sinx2\Rightarrow \lim_{x\to0} \cos x^2- 2x^2\sin x^2
    10 \Rightarrow 1 - 0
    1 \Rightarrow 1

    The slope of the tangent at x=0x=0 on the curve f(x)=sinx2x f(x)=\dfrac{sin x^2}{x} is 11

    We know that, product of slope of tangent and normal is 1-1.
    Therefore, m1×m2=1 m_1\times m_2 =-1 
    where, m1=1 m_1 =1
    Hence, m2=1 m_2 = -1

    Slope of normal  =1 = -1
    y=mx+c y =mx+c
    Here, m=1m=-1

    To find c: at x=0x=0 we have y=f(x)=0y=f(x)=0
    Substituting these values in above equation of a line, we get 
    0=1×0+c 0 = -1 \times 0 +c
    c=0 \Rightarrow c=0

    Therefore, equation of normal is y=xy=-x or y+x=0y+x=0

    Hence, correct answer id option (A)
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now