Self Studies

Tangents and its Equations Test 51

Result Self Studies

Tangents and its Equations Test 51
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If the sum of the squares of the intercepts on the axes cut off by the tangent to the cuve $$\displaystyle x^{1/3}+y^{1/3}= a^{1/3}\left ( a> 0 \right )$$ at $$\displaystyle \left ( \dfrac{a}{8}, \dfrac{a}{8} \right )$$ is $$2$$, then $$a$$ has the value
    Solution
    $$\displaystyle x^{1/3}+y^{1/3}= a^{1/3}\left ( a> 0 \right )$$
    $$y'(x)= -\cfrac{y^{2/3}}{x^{2/3}}$$
    $$\left.y'\right|_{(x,y)=\left(\dfrac{a}{8}, \dfrac{a}{8}\right)} = -1$$

    Equation of tangent
    $$ x+y =c$$
    $$x +y = \dfrac{a}{4};\>\>\>\>\>\> \because \left(\dfrac{a}{8}, \dfrac{a}{8}\right)$$ satisfies it

    $$x-$$intercept $$= a\dfrac{a}{4} = y-$$intercept
    Given, $$ \cfrac{a^2}{16}+\cfrac{a^2}{16} = 2 $$
    $$a =  \pm 4$$
    $$a =4;\>\>\>\>\>\because a>0$$
  • Question 2
    1 / -0
    The coordinates of the point $$P$$ on the curve $$y^{2}= 2x^{3}$$ the tangent at which is perpendicular to the line $$4x-3y + 2 = 0$$, are given by
    Solution
    $$4x-3y+2=0$$
    Or 
    $$3y=4x+2$$
    Or 
    $$y=\dfrac{4}{3}x+\dfrac{2}{3}$$.
    Hence slope of the tangent will be 
    $$=\dfrac{-3}{4}$$
    Now 
    $$\dfrac{dy}{dx}=\dfrac{-3}{4}$$
    $$y=\pm\sqrt{2}.x^{\frac{3}{2}}$$
    Hence
    $$\dfrac{dy}{dx}$$

    $$=\pm\sqrt{2}.\dfrac{3}{2}.x^{\frac{1}{2}}$$

    $$=\dfrac{-3}{4}$$

    Or 
    $$-\sqrt{2}.\dfrac{3}{2}.x^{\dfrac{1}{2}}=\dfrac{-3}{4}$$
    Or 
    $$2\sqrt{2}.x^{\dfrac{1}{2}}=1$$
    Or 
    $$x=\dfrac{1}{8}$$.
    Hence
    $$y=-\sqrt{2}.x^{\dfrac{3}{2}}$$
    $$=-\sqrt{2}.\dfrac{1}{16\sqrt{2}}$$
    $$=-\dfrac{1}{16}$$
    Hence the co-ordinates are  $$(\dfrac{1}{8},\dfrac{-1}{16})$$
  • Question 3
    1 / -0
    The tangent to the curve $$x= a\sqrt{\cos 2\theta }\cos \theta $$, $$y= a\sqrt{\cos 2\theta }\sin \theta
    $$ at the point corresponding to $$\theta = \pi /6$$ is
    Solution
    $$\displaystyle \dfrac{dx}{d\theta }= -a\sqrt{\cos 2\theta }\sin \theta  +\dfrac{-a\cos \theta \sin 2\theta }{\sqrt{\cos 2\theta }}$$

    $$\displaystyle = -a\dfrac{\cos 2\theta \sin \theta +\cos \theta \sin 2\theta }{\sqrt{\cos 2\theta }}$$

    $$\displaystyle = \dfrac{-a\sin 3\theta }{\sqrt{\cos 2\theta }}$$

    $$\displaystyle \dfrac{dy}{d\theta }= a\sqrt{\cos 2\theta }\, \cos \theta -a\dfrac{\sin \theta \sin 2\theta }{\sqrt{\cos 2\theta }}$$

    $$
    \displaystyle = \dfrac{a\cos 3\theta }{\sqrt{\cos 2\theta }}$$

    Hence $$\displaystyle \dfrac{dy}{dx}= -\cot 3\theta \Rightarrow \dfrac{dy}{dx}|_{\theta = \pi /6 }= 0$$
    So the tangent to the curve at $$\theta = \pi /6 $$ is parallel to the $$x$$-axis.
  • Question 4
    1 / -0
    The equation of the tangent line at an inflection point of $$\displaystyle f\left ( x \right )=x^{4}-6x^{3}+12x^{2}-8x+3$$ is
    Solution
    Given, $$\displaystyle f\left ( x \right )=x^{4}-6x^{3}+12x^{2}-8x+3$$
    At inflection point $$ f''(x) = 0 $$
    $$ 12x^2-36x+24 = 0$$
    $$(x-2)(x-1) = 0$$
    $$x =2,1$$
    $$f'(x)  = 4x^3-18x^2+24x-8$$
    $$f'(1) = 2$$ and $$f'(2) = 0$$
    $$f(1) = 2$$ and $$f(2) = 3 $$
    So the equations are $$ y=3 $$ and $$ y=2x$$
  • Question 5
    1 / -0
    The equation of the common tangent to the curves $$\displaystyle y^{2}= 8x$$ and $$ \displaystyle xy= -1$$ is
    Solution
    A point on the curve $$xy = -1$$ is of the form $$\left ( t,-1/t \right )$$.Now

    $$\displaystyle y= -\dfrac{1}{x}\Rightarrow \dfrac{dy}{dx}= \dfrac{1}{x^{2}}\Rightarrow \dfrac{dy}{dx}|_{\left (  t,-1/t \right )}= \dfrac{1}{t^{2}}$$

    $$\therefore $$ Equation of tangent to the curve $$xy = -1$$ at  $$\left (  t,-1/t \right )$$ is

    $$\displaystyle y+\dfrac{1}{t}= \dfrac{1}{t^{2}}\left ( x-t \right )\Rightarrow y= \dfrac{1}{t^{2}}\, x-\dfrac{1}{t}$$

    For this line to be tangent to the parabola $$y^{2}= 8x$$ it should
    be of the form $$y=mx+\displaystyle \dfrac{2}{m}$$ so 

    $$\displaystyle \dfrac{1}{t^{2}}$$ and $$\displaystyle \dfrac{-2}{t}= \dfrac{2}{m}$$ $$m=-1$$

    $$\displaystyle \therefore -t= \dfrac{1}{t^{2}}\Rightarrow -t^{3}= 1\Rightarrow t= -1$$

    Thus the required tangent is $$y = x + 2$$.
  • Question 6
    1 / -0
    The point(s) on the curve $$y^{3}+3x^{2}=12y$$ the tangent is vertical is (are)
    Solution
    $$3y^{2}.y'+6x=12y'$$
    Or 
    $$y'(3y^{2}-12)=-6x$$
    Or 
    $$y'(y^{2}-4)=-2x$$
    Or 
    $$y'=\dfrac{-2x}{y^{2}-4}$$
    Hence for the tangent to be vertical
    $$y^{2}-4=0$$
    $$y=\pm2$$
    Substituting $$y=2$$, we get 
    $$3x^{2}=12y-y^{3}$$
    $$=24-8$$
    $$=16$$
    Hence
    $$x=\dfrac{\pm4}{\sqrt{3}}$$
    $$y=-2$$ gives 
    $$3x^{2}=-16$$ 
    This is not possible.
    Hence the required point is 
    $$(\dfrac{\pm4}{\sqrt{3}},2)$$.
  • Question 7
    1 / -0
    The equation of the tangents to $$\displaystyle 4x^{2}-9y^{2}=36$$ which are perpendicular to the straight line $$\displaystyle 2y+5x= 10$$ are
    Solution
    Given, $$2y+5x=10$$
    $$2y'+5=0$$
    $$y'=\dfrac{-5}{2}$$.
    Hence the required slope is $$\dfrac{2}{5}$$.
    Now 
    $$4x^{2}-9y^{2}=36$$.
    $$4x^{2}-36=9y^{2}$$
    $$y=\dfrac{1}{3}.\sqrt{4x^{2}-36}$$.
    $$y'=\dfrac{8x}{6\sqrt{4x^{2}-36}}$$ $$=\dfrac{2}{5}$$
    $$40x=12\sqrt{4x^{2}-36}$$
    $$10x=3\sqrt{4x^{2}-36}$$
    $$100x^{2}=36x^{2}-324$$
    $$64x^{2}=-324$$
    $$x^{2}=\dfrac{-81}{16}$$.
    Hence no real values of x.
    Hence answer is none of these.
  • Question 8
    1 / -0
    Of all the line tangent to the graph of the curve  $$\displaystyle y=\frac{6}{x^{2}+3},$$ find the equations of the tangent lines of minimum and maximum slope respectively.
    Solution
    Slope of the tangents will be 
    $$y'=\dfrac{-12x}{(x^{2}+3)^{2}}$$
    Now for maximum and minimum slopes
    $$y"=0$$
    Or 
    $$-12(x^{2}+3)^{2}+24x(x^{2}+3).2x=0$$
    Or 
    $$(x^{2}+3)[48x^{2}-12x^{2}-36]=0$$
    Or 
    $$36x^{2}-36=0$$
    Or 
    $$x=\pm1$$.
    Hence
    $$y'(1)=\dfrac{-12}{16}=\dfrac{-3}{4}$$
    And 
    $$y'(-1)=\dfrac{3}{4}$$.
    Hence $$y(1)=y(-1)=\dfrac{6}{4}=\dfrac{3}{2}$$.
    Hence the equations are 
    $$y-\dfrac{3}{2}=\dfrac{3}{4}(x+1)$$
    Or 
    $$4y-6=3x+3$$
    Or 
    $$3x-4y+9=0$$
    And 
    $$y-\dfrac{3}{2}=\dfrac{-3}{4}(x-1)$$
    Or 
    $$4y-6=-3x+3$$
    Or 
    $$3x+4y-6=0$$.
  • Question 9
    1 / -0

    Directions For Questions

    Let $$y = f(x)$$ be a differentiable function which satisfies $$\displaystyle f'(x)=f^{2}(x)$$ and $$\displaystyle f(O)=-\frac{1}{2}$$ The graph of the differentiable function $$y = g(x)$$ contains the point $$(0, 2)$$ and has the property that for each number 'P' the line tangent to $$y = g(x)$$ at $$(P, g(p))$$ intersetct x - axis at  $$P + 2$$
    On the basis of above information answer the following questions

    ...view full instructions

    If the tangent is drawn to the curve y = f(x) at a point where it crosses the y - axis then its equation is
    Solution
    It is given that 
    $$\dfrac{df(x)}{dx}=f(x)^{2}$$
    Let 
    $$f(x)=y$$
    Then
    $$y'=y^{2}$$
    Or 
    $$\int y^{-2}.dy=\int dx$$
    Or 
    $$\dfrac{-1}{y}=x+c$$
    Now 
    $$y=\dfrac{-1}{2}$$ at x=0.
    Hence
    $$c=2$$
    Or 
    $$-\dfrac{1}{y}=x+2$$
    Or 
    $$xy+2y+1=0$$ ...(i)
    $$\dfrac{dy}{dx}_{x=0}$$
    $$=y^{2}_{y=\frac{-1}{2}}$$
    Or 
    $$y'=\dfrac{1}{4}$$.
    Now equation of the tangent is 
    $$y-(\dfrac{-1}{2})=\dfrac{1}{4}(x-0)$$
    Or 
    $$4y+2=x$$
    Or 
    $$x-4y=2$$ is the required equation of tangent.
  • Question 10
    1 / -0
    What normal to the curve $$\displaystyle y=x^{2}$$ form the shortest chord?
    Solution
    Any point on curve $$\displaystyle y=x^{2}$$ is $$\displaystyle P\left ( t,t^{2} \right )$$
    $$\displaystyle

    \frac{dy}{dx}=2x$$ equation of normal at $$\displaystyle \left (

    t,t^{2} \right )$$ is$$\displaystyle y-t^{2}=-\frac{1}{2t}\left ( x-t

    \right )$$
    solving with $$\displaystyle y=x^{2}$$ we get
    $$\displaystyle

    x^{2}-t^{2}=\frac{-1}{2t}\left ( x-t \right )\Rightarrow \left ( x-t

    \right )\left ( x+t+\frac{1}{2t} \right )=0\Rightarrow

    x=-t-\frac{1}{2t}$$
    So normal cuts the curve again at $$\displaystyle Q\left ( -t-\frac{1}{2t},\left ( -t-\frac{1}{2t} \right )^{2} \right )$$
    $$\displaystyle z=PQ^{2}=4t^{2}\left ( 1+\frac{1}{4t^{2}} \right )^{3}$$
    $$\displaystyle

    \frac{dz}{dt}=0\Rightarrow t=\pm \frac{1}{\sqrt{2}}=0,\frac{dz}{dt}$$

    changes sign from negative to positive about $$\displaystyle

    t=\frac{1}{\sqrt{2}}$$ as well as $$\displaystyle

    t=-\frac{1}{\sqrt{2}}$$(No chord is format for t=0)
    z is minimum

    at $$\displaystyle t=\pm \frac{1}{\sqrt{2}}$$ & minimum value

    of $$\displaystyle z=PQ^{2}=3$$ shortest normal chord has

    length $$\displaystyle \sqrt{3}$$ & its equation is $$\displaystyle

    x+\sqrt{2y}-\sqrt{2}=0$$ or $$\displaystyle x-\sqrt{2y}+\sqrt{2}=0$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now