Self Studies

Tangents and its Equations Test 55

Result Self Studies

Tangents and its Equations Test 55
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Paraboals (yα)2=4a(xβ)and(yα)2=4a(xβ)(y-\alpha )^{2}=4a(x-\beta )and (y-\alpha )^{2}=4a'(x-\beta ') will have a common normal (other than the normal passing through vertex ofparabola)if:
    Solution

  • Question 2
    1 / -0
    The normal to the curve x=a(cosθ +θsinθ  )x=a\left( \cos { \theta  } +\theta \sin { \theta  }  \right) , y=a(sinθ θcosθ  )y=a\left( \sin { \theta  } -\theta \cos { \theta  }  \right) at any point θ\theta is such that
    Solution
    x=acosθ+aθsinθx=a\cos \theta +a\theta \sin \theta
    dxdθ=asinθ+a{θ(cosθ)+sinθ}\dfrac {dx}{d\theta }=-a\sin \theta +a\left\{\theta (-\cos \theta )+\sin \theta \right\}
    =aθcosθ=-a\theta \cos \theta
    y=a(sinθθcosθ)y=a(\sin \theta -\theta \cos \theta )
    dydx=acosθa{θsinθ+cosθ}\dfrac {dy}{dx}=a\cos \theta -a \left\{\theta \sin \theta +\cos \theta \right\}
     dydx=aθsinθaθcosθ=tanθ\therefore \ \dfrac {dy}{dx}=\dfrac {-a\theta \sin \theta }{-a\theta \cos \theta }=\tan \theta
    The equation of normal at θ\theta is:
    yy1=1dydx(xx1)y-y_1=-\dfrac {1}{\dfrac {dy}{dx}} (x-x_1)
    or, ya(sinθθcosθ)=cosθsinθ(xacosθaθsinθ)y-a (\sin \theta -\theta \cos \theta )=-\dfrac {\cos \theta }{\sin \theta }(x-a\cos \theta -a\theta \sin \theta )
    or, ysinθ sin2θ +aθsinθ cosθy \sin \theta  -\sin^2\theta  +a\theta \sin \theta  \cos \theta
    =xcosθ+acos2θ+aθsinθ cosθ=-x\cos \theta +a\cos^2\theta +a\theta \sin \theta  \cos \theta
    or, ysinθ+xcosθ=ay\sin \theta +x\cos \theta =a
    which wakes it clear that normal passes through origin (0,0)(0,0)

  • Question 3
    1 / -0
    The slope of the curve y=sinx+cos2xy=\sin { x } +\cos ^{ 2 }{ x } is zero at a point , whose x-coordinate can be ?
    Solution

  • Question 4
    1 / -0
    The tangent to the circle x2+y2=5x^2+y^2=5 at the point (1,2)(1,-2)  also touches the circle x2+y28x+6y+20=0x^2+y^2-8x+6y+20=0 at 
    Solution

  • Question 5
    1 / -0
    If for a curve represented parametrically by x=sec2t,y=cottx={ sec }^{ 2 }t,\quad y=cot\quad t\quad , the tangent  at a point P(t=π 4)P(t=\frac { \pi  }{ 4 } ) meets the curve again at the point Q, then PQ\begin{vmatrix} PQ \end{vmatrix}is equal to 
    Solution

  • Question 6
    1 / -0
    If the subnormal to the curve x2.yn=a2{ x }^{ 2 }.{ y }^{ n }={ a }^{ 2 } is a constant then n=
    Solution
    Given,

    x2yn=a2x^2y^n=a^2

    x=a2yn\Rightarrow x=\sqrt{\dfrac{a^2}{y^n}}

    2xyn+x2nyn1dydx=0\Rightarrow 2xy^n+x^2ny^{n-1}\dfrac{dy}{dx}=0

    dydx=2ynx\Rightarrow \dfrac{dy}{dx}=-\dfrac{2y}{nx}

    dydx=2yna2yn\Rightarrow \dfrac{dy}{dx}=-\dfrac{2y}{n\sqrt{\frac{a^2}{y^n}}}

    dydx=2nayn+22\therefore \dfrac{dy}{dx}=-\dfrac{2}{na}y^{\frac{n+2}{2}}

    Subnormal is given by,

    SN=ydydxSN=y \dfrac{dy}{dx}

    =y(2nayn+22)=y\left ( -\dfrac{2}{na}y^{\frac{n+2}{2}} \right )

    SN=2nayn+42\therefore SN=-\dfrac{2}{na}y^{\frac{n+4}{2}}

    n=4\therefore n=-4

  • Question 7
    1 / -0
    If θ\theta is angle of intersection between y=10x2y=10-x^{2} and y=4+x2y=4+x^{2} then tanθ|\tan \theta| is-
    Solution
    Given:y=10x2y=10-{x}^{2}    ......(1)(1)
    y=4+x2y=4+{x}^{2}    ......(2)(2)
    On solving,
    10x2=4+x210-{x}^{2}=4+{x}^{2}
    2x2=6\Rightarrow 2{x}^{2}=6
    x2=62=3\Rightarrow {x}^{2}=\dfrac{6}{2}=3
    x=±3\therefore x=\pm \sqrt{3} from (1)(1)
    y=10(±3)2=103=7\Rightarrow y=10-{\left(\pm\sqrt{3}\right)}^{2}=10-3=7
    Consider y=10x2y=10-{x}^{2}
    dydx=2x\dfrac{dy}{dx}=-2x
    m1=[dydx](3,7)=2×3=23{m}_{1}=\left[\dfrac{dy}{dx}\right]_{\left(\sqrt{3},7\right)}=-2\times\sqrt{3}=-2\sqrt{3}
    Consider y=4+x2y=4+{x}^{2}    
    dydx=2x\dfrac{dy}{dx}=2x
    m2=[dydx](3,7)=2×3=23{m}_{2}=\left[\dfrac{dy}{dx}\right]_{\left(\sqrt{3},7\right)}=2\times\sqrt{3}=2\sqrt{3}
    =m1m21+m1m2=\left|\dfrac{{m}_{1}-{m}_{2}}{1+{m}_{1}{m}_{2}}\right|
    tanθ=23231+(23)(23)\tan{\theta}=\left|\dfrac{-2\sqrt{3}-2\sqrt{3}}{1+\left(-2\sqrt{3}\right)\left(2\sqrt{3}\right)}\right|
    =43112=\left|\dfrac{-4\sqrt{3}}{1-12}\right|
    =4311=\dfrac{4\sqrt{3}}{11}
    tanθ=4311\therefore \tan{\theta}=\dfrac{4\sqrt{3}}{11}
  • Question 8
    1 / -0
    y=6tanx(exx1)3x3x454x5,y = 6\tan \,x\left( {{e^x} - x - 1} \right) - 3{x^3} - {x^4} - \frac{5}{4}{x^5},\, if nth{n^{th}} derivative at x=0 is non zero then least value of n is
    Solution

  • Question 9
    1 / -0
    The curve yexy+x=0y-{e}^{xy}+x=0 has a vertical tangent at the point
    Solution

  • Question 10
    1 / -0
    The slope of the tangent to the curve at a point (x, y) on it is proportional to (x-2). If the slope of the tangent to the curve at  (10,-9) on it -3. The equation of the curve is
    Solution

    Step -1: Find the value of slope.{\textbf{Step -1: Find the value of slope}}{\textbf{.}}
                   The slope of the tangent to the curve at a point (x,y) on it is proportional to (x2).{\text{The slope of the tangent to the curve at a point }}\left( {x,y} \right){\text{ on it is proportional to }}\left( {x - 2} \right).
                    =dydx=m(x2) = \dfrac{{dy}}{{dx}} = m\left( {x - 2} \right)
                    =dydx=k(x2)[where k is a proportionality constant] = \dfrac{{dy}}{{dx}} = k\left( {x - 2} \right)\left[ {{\text{where }}k{\text{ is a proportionality constant}}} \right]
                    Slope of the tangent to the curve at (10,9) is 3.{\text{Slope of the tangent to the curve at }}\left( {10, - 9} \right){\text{ is }} - 3.
                     3=k(102) \Rightarrow  - 3 = k\left( {10 - 2} \right)
                     3=8k \Rightarrow  - 3 = 8k
                    k= 38 \Rightarrow k =  - \dfrac{3}{8}
                    dydx= 38(x2) \Rightarrow \dfrac{{dy}}{{dx}} =  - \dfrac{3}{8}\left( {x - 2} \right)
    Step -2: Integrate the formed equation and solve it further.{\textbf{Step -2: Integrate the formed equation and solve it further}}{\textbf{.}}
                    Integrating both sides,{\text{Integrating both sides,}}
                    y= 38(x2)22+c  .......(i)  [Eqaution of curve] \Rightarrow y =  - \dfrac{3}{8}\dfrac{{{{\left( {x - 2} \right)}^2}}}{2} + c{\text{  }}.......\left( i \right){\text{  }}\left[ {{\text{Eqaution of curve}}} \right]
                    Also, (10,9) satisfy the equation of curve as it lies on the curve.{\text{Also, }}\left( {10, - 9} \right){\text{ satisfy the equation of curve as it lies on the curve}}{\text{.}}
                      9= 38(102)22+c\therefore  - 9 =  - \dfrac{3}{8}\dfrac{{{{\left( {10 - 2} \right)}^2}}}{2} + c
                      9= 316×82+c \Rightarrow  - 9 =  - \dfrac{3}{{16}} \times {8^2} + c
                     c=3 \Rightarrow c = 3
    Hence, the equation of the curve is y= 316(x2)2+3.{\textbf{Hence, the equation of the curve is }}\mathbf{y=  - \dfrac{3}{{16}}{\left( {x - 2} \right)^2} + 3.}
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now