Self Studies

Tangents and its Equations Test 55

Result Self Studies

Tangents and its Equations Test 55
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Paraboals $$(y-\alpha )^{2}=4a(x-\beta )and (y-\alpha )^{2}=4a'(x-\beta ')$$ will have a common normal (other than the normal passing through vertex ofparabola)if:
    Solution

  • Question 2
    1 / -0
    The normal to the curve $$x=a\left( \cos { \theta  } +\theta \sin { \theta  }  \right) $$, $$y=a\left( \sin { \theta  } -\theta \cos { \theta  }  \right) $$ at any point $$\theta$$ is such that
    Solution
    $$x=a\cos \theta +a\theta \sin \theta $$
    $$\dfrac {dx}{d\theta }=-a\sin \theta +a\left\{\theta (-\cos \theta )+\sin \theta \right\}$$
    $$=-a\theta \cos \theta $$
    $$y=a(\sin \theta -\theta \cos \theta )$$
    $$\dfrac {dy}{dx}=a\cos \theta -a \left\{\theta \sin \theta +\cos \theta \right\}$$
    $$\therefore \ \dfrac {dy}{dx}=\dfrac {-a\theta \sin \theta }{-a\theta \cos \theta }=\tan \theta $$
    The equation of normal at $$\theta $$ is:
    $$y-y_1=-\dfrac {1}{\dfrac {dy}{dx}} (x-x_1)$$
    or, $$y-a (\sin \theta -\theta \cos \theta )=-\dfrac {\cos \theta }{\sin \theta }(x-a\cos \theta -a\theta \sin \theta )$$
    or, $$y \sin \theta  -\sin^2\theta  +a\theta \sin \theta  \cos \theta $$
    $$=-x\cos \theta +a\cos^2\theta +a\theta \sin \theta  \cos \theta $$
    or, $$y\sin \theta +x\cos \theta =a$$
    which wakes it clear that normal passes through origin $$(0,0)$$

  • Question 3
    1 / -0
    The slope of the curve $$y=\sin { x } +\cos ^{ 2 }{ x }$$ is zero at a point , whose x-coordinate can be ?
    Solution

  • Question 4
    1 / -0
    The tangent to the circle $$x^2+y^2=5$$ at the point $$(1,-2)$$  also touches the circle $$x^2+y^2-8x+6y+20=0$$ at 
    Solution

  • Question 5
    1 / -0
    If for a curve represented parametrically by $$x={ sec }^{ 2 }t,\quad y=cot\quad t\quad $$ , the tangent  at a point $$P(t=\frac { \pi  }{ 4 } )$$ meets the curve again at the point Q, then $$\begin{vmatrix} PQ \end{vmatrix}$$is equal to 
    Solution

  • Question 6
    1 / -0
    If the subnormal to the curve $${ x }^{ 2 }.{ y }^{ n }={ a }^{ 2 }$$ is a constant then n=
    Solution
    Given,

    $$x^2y^n=a^2$$

    $$\Rightarrow x=\sqrt{\dfrac{a^2}{y^n}}$$

    $$\Rightarrow 2xy^n+x^2ny^{n-1}\dfrac{dy}{dx}=0$$

    $$\Rightarrow \dfrac{dy}{dx}=-\dfrac{2y}{nx}$$

    $$\Rightarrow \dfrac{dy}{dx}=-\dfrac{2y}{n\sqrt{\frac{a^2}{y^n}}}$$

    $$\therefore \dfrac{dy}{dx}=-\dfrac{2}{na}y^{\frac{n+2}{2}}$$

    Subnormal is given by,

    $$SN=y \dfrac{dy}{dx}$$

    $$=y\left ( -\dfrac{2}{na}y^{\frac{n+2}{2}} \right )$$

    $$\therefore SN=-\dfrac{2}{na}y^{\frac{n+4}{2}}$$

    $$\therefore n=-4$$

  • Question 7
    1 / -0
    If $$\theta$$ is angle of intersection between $$y=10-x^{2}$$ and $$y=4+x^{2}$$ then $$|\tan \theta|$$ is-
    Solution
    Given:$$y=10-{x}^{2}$$    ......$$(1)$$
    $$y=4+{x}^{2}$$    ......$$(2)$$
    On solving,
    $$10-{x}^{2}=4+{x}^{2}$$
    $$\Rightarrow 2{x}^{2}=6$$
    $$\Rightarrow {x}^{2}=\dfrac{6}{2}=3$$
    $$\therefore x=\pm \sqrt{3}$$ from $$(1)$$
    $$\Rightarrow y=10-{\left(\pm\sqrt{3}\right)}^{2}=10-3=7$$
    Consider $$y=10-{x}^{2}$$
    $$\dfrac{dy}{dx}=-2x$$
    $${m}_{1}=\left[\dfrac{dy}{dx}\right]_{\left(\sqrt{3},7\right)}=-2\times\sqrt{3}=-2\sqrt{3}$$
    Consider $$y=4+{x}^{2}$$    
    $$\dfrac{dy}{dx}=2x$$
    $${m}_{2}=\left[\dfrac{dy}{dx}\right]_{\left(\sqrt{3},7\right)}=2\times\sqrt{3}=2\sqrt{3}$$
    $$=\left|\dfrac{{m}_{1}-{m}_{2}}{1+{m}_{1}{m}_{2}}\right|$$
    $$\tan{\theta}=\left|\dfrac{-2\sqrt{3}-2\sqrt{3}}{1+\left(-2\sqrt{3}\right)\left(2\sqrt{3}\right)}\right|$$
    $$=\left|\dfrac{-4\sqrt{3}}{1-12}\right|$$
    $$=\dfrac{4\sqrt{3}}{11}$$
    $$\therefore \tan{\theta}=\dfrac{4\sqrt{3}}{11}$$
  • Question 8
    1 / -0
    $$y = 6\tan \,x\left( {{e^x} - x - 1} \right) - 3{x^3} - {x^4} - \frac{5}{4}{x^5},\,$$ if $${n^{th}}$$ derivative at x=0 is non zero then least value of n is
    Solution

  • Question 9
    1 / -0
    The curve $$y-{e}^{xy}+x=0$$ has a vertical tangent at the point
    Solution

  • Question 10
    1 / -0
    The slope of the tangent to the curve at a point (x, y) on it is proportional to (x-2). If the slope of the tangent to the curve at  (10,-9) on it -3. The equation of the curve is
    Solution

    $${\textbf{Step -1: Find the value of slope}}{\textbf{.}}$$
                   $${\text{The slope of the tangent to the curve at a point }}\left( {x,y} \right){\text{ on it is proportional to }}\left( {x - 2} \right).$$
                    $$ = \dfrac{{dy}}{{dx}} = m\left( {x - 2} \right)$$
                    $$ = \dfrac{{dy}}{{dx}} = k\left( {x - 2} \right)\left[ {{\text{where }}k{\text{ is a proportionality constant}}} \right]$$
                    $${\text{Slope of the tangent to the curve at }}\left( {10, - 9} \right){\text{ is }} - 3.$$
                    $$ \Rightarrow  - 3 = k\left( {10 - 2} \right)$$
                    $$ \Rightarrow  - 3 = 8k$$
                    $$ \Rightarrow k =  - \dfrac{3}{8}$$
                    $$ \Rightarrow \dfrac{{dy}}{{dx}} =  - \dfrac{3}{8}\left( {x - 2} \right)$$
    $${\textbf{Step -2: Integrate the formed equation and solve it further}}{\textbf{.}}$$
                    $${\text{Integrating both sides,}}$$
                    $$ \Rightarrow y =  - \dfrac{3}{8}\dfrac{{{{\left( {x - 2} \right)}^2}}}{2} + c{\text{  }}.......\left( i \right){\text{  }}\left[ {{\text{Eqaution of curve}}} \right]$$
                    $${\text{Also, }}\left( {10, - 9} \right){\text{ satisfy the equation of curve as it lies on the curve}}{\text{.}}$$
                     $$\therefore  - 9 =  - \dfrac{3}{8}\dfrac{{{{\left( {10 - 2} \right)}^2}}}{2} + c$$
                     $$ \Rightarrow  - 9 =  - \dfrac{3}{{16}} \times {8^2} + c$$
                     $$ \Rightarrow c = 3$$
    $${\textbf{Hence, the equation of the curve is }}\mathbf{y=  - \dfrac{3}{{16}}{\left( {x - 2} \right)^2} + 3.}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now