Self Studies

Logarithm and Antilogarithm Test 1

Result Self Studies

Logarithm and Antilogarithm Test 1
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The value of $$7^{\frac{1}{2}}.  8^{\frac{1}{2}}$$ is :
    Solution
    $$\Rightarrow$$  $$(7)^{\tfrac{1}{2}}.(8)^{\frac{1}{2}}$$

    $$\Rightarrow$$  $$(7\times 8)^{\frac{1}{2}}$$         $$[\,\because\,m^x.n^x=(m\times n)^x]$$

    $$\Rightarrow$$   $$56^{\frac{1}{2}}$$
  • Question 2
    1 / -0
    Find the product. $$(a^2) (2a^{22}) (4a^{26})$$

    Solution
    $$(a^2)  (2a^{22})  (4a^{26})$$
    $$=(a^2)\times  (2a^{22})\times  (4a^{26})$$
    $$=8a^{2+22+26}$$
    $$=8a^{50}$$
  • Question 3
    1 / -0
    $$\sqrt [4]{\sqrt [3]{2^{2}}}$$ equal
    Solution
    $$\Rightarrow$$  $$\sqrt[4]{\sqrt[3]{2^2}}$$

    $$\Rightarrow$$  $$[(2^2)^\tfrac{1}{3}]^{\tfrac{1}{4}}$$

    $$\Rightarrow$$  $$(2)^{2\times \tfrac{1}{3}\times \tfrac{1}{4}}$$

    $$\Rightarrow$$   $$2^{\tfrac{1}{6}}$$

    $$\therefore$$     $$\sqrt[4]{\sqrt[3]{2^2}}=2^{\tfrac{1}{6}}$$
  • Question 4
    1 / -0
    If $$ \log 2 = 0.3010$$ and $$ \log 3 = 0.4771$$, then the value of $$\log 6$$ will be
    Solution
    Using the Logarithmic property,

    $$\log ab = \log a+ \log b$$

    $$ \log 6= \log(2\times3) $$

    $$= \log 2+ \log 3$$

    $$=0.3010+0.4771$$

    $$=0.7781$$
  • Question 5
    1 / -0
    The value of $$\cfrac{3^0+7^0}{5^0}$$ is:
    Solution
    $$\Rightarrow$$  $$\dfrac{3^0+7^0}{5^0}$$

    $$\Rightarrow$$  $$\dfrac{1+1}{1}$$         $$[\,\because\,x^0=1]$$

    $$\Rightarrow$$  $$\dfrac{2}{1}$$

    $$\Rightarrow$$  $$2$$

    $$\therefore$$    $$\dfrac{3^0+7^0}{5^0}=2$$
  • Question 6
    1 / -0
    Simplified value of $$(25)^{\frac{1}{3}} \times (5)^{\frac{1}{3}}$$ is :
    Solution
    $$(25)^{\tfrac{1}{3}}\times (5)^{\tfrac{1}{3}}$$ $$\Rightarrow$$   $$(25\times 5)^\tfrac{1}{3}$$    ...$$[\because\,m^x\times n^x=(m\times n)^x]$$

    $$\Rightarrow$$  $$(125)^\tfrac{1}{3}$$

    $$\Rightarrow$$  $$\sqrt[3]{125}=5$$

    $$\therefore$$    $$(25)^{\tfrac{1}{3}}\times (5)^{\tfrac{1}{3}}=5$$
  • Question 7
    1 / -0
    If $$\displaystyle \log_3 x = 0$$, then value of $$x$$ is equal to
    Solution
    Given, $$\log_3x = 0$$      
    $$\implies x=3^0$$   (Since we know that $$\log_ab=t\Rightarrow b=a^t$$)
    $$\therefore x=1$$.
  • Question 8
    1 / -0
    Given that $$4^{n+1} = 256$$, find the value of $$n$$.
    Solution
    $$4^{n+1}=256$$
    Taking log on both sides to the base 2
    $$\Rightarrow\: \log_{2}{4^{n+1}}=\log_{2}{256}$$
    $$\Rightarrow\:(n+1)\log_{2}{4}=\log_{2}{2^{8}}$$
    $$\Rightarrow\:(n+1).\log_{2}{2^2}=8$$
    $$\Rightarrow\:(n+1).2=8$$
    $$\Rightarrow\:(n+1)=4$$
    $$\Rightarrow\:n=3$$
  • Question 9
    1 / -0
    The value of $$\displaystyle \log_5 1$$ is
    Solution
    Consider, $$ \log _{ 5 }{ 1 } =x$$
    $$\implies 1 = { 5 }^{ x }$$
    $$\implies 5^0 = 5^x$$
    $$\implies  x =  0 $$.
  • Question 10
    1 / -0
    The exponential form of $$\log_{10}1 = 0$$ is $$10^{m} = 1$$,  then the value of $$m$$ is 
    Solution
    $$ \log _{ 10 }{ 1 }= 0\\ 1 = { 10 }^{ 0 }$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now