Self Studies

Logarithm and Antilogarithm Test 10

Result Self Studies

Logarithm and Antilogarithm Test 10
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\log {28}$$ is same as_____
    Solution
    $$\log28$$
    $$=\log(14\times2)$$     
    $$=\log14+\log2$$          [Using: $$\log a+\log b =\log(a \times b)$$]
    Hence, C is the correct option.
  • Question 2
    1 / -0
    $$\log {10}$$ is same as______
    Solution
    $$\log10$$
    $$=\log(5\times2)$$
    $$=\log5+\log2$$           [Using: $$\log a+\log b =\log(a \times b)$$]
    Hence, D is the correct option.
  • Question 3
    1 / -0
    Find the characteristic of $$\log 27.93$$
    Solution
    From log table,
    $$\log27.93=1.4460$$
    Here, Characteristics$$=1$$ and Mantisa$$=0.4460$$
    Hence, B is the correct option.
  • Question 4
    1 / -0
    Find the characteristic of $$\log 277.9301$$
    Solution
    From logarithmic table,
    $$\log 277.9301=2.4439$$
    Here, Characteristics$$=2$$
    Hence, C is the correct option.
  • Question 5
    1 / -0
    The value of $$10^{\log_{10}{10}^{7}}$$ is:
    Solution
    Consider, $$10^{\log_{10}{10}^{7}} $$
    $$= 10^{{{7\log}_{10}}{10}}$$
    $$ = 10^{7\times 1}$$
    $$ = 10^{7} $$.
  • Question 6
    1 / -0
    Find the value : 
    i) $$\left(\dfrac{4}{5}\right)^3 \div \left(\dfrac{4}{5}\right)^2$$
    ii) $$4^7 \div 4^5$$
    Solution
    (1)

    $$\left ( \frac{4}{5} \right )^{3}\div \left ( \frac{4}{5} \right )^{2}$$

    $$=\left ( \frac{4}{5} \right )^{3}\times  \left ( \frac{5}{4} \right )^{2}$$

    $$=\frac{4^{3}}{5^{3}}\times \frac{5^{2}}{4^{2}}$$

    $$=\frac{4^{3}}{4^{2}}\times \frac{5^{2}}{5^{3}}$$

    Now apply law of exponents, $$\frac{x^{m}}{x^{n}}=x^{m-n}$$

    So, the expression is

    $$=4^{3-2}\times 5^{2-3}$$

    $$=4^{1}\times 5^{-1}$$

    $$=\frac{4}{5}$$


    (2)

     $$4^{7}\div 4^{5}$$

    $$=4^{7}\times \frac{1}{4^{5}}$$

    $$=\frac{4^{7}}{4^{5}}$$

    Now apply law of exponents, $$\frac{x^{m}}{x^{n}}=x^{m-n}$$

    So, the expression is
    $$=4^{7-5}$$
    $$=4^{2}$$
    $$=16$$


  • Question 7
    1 / -0
    Let $$\log_{\sqrt{8}}b=3\dfrac{1}{3},$$ then find the value of $$b$$ is
    Solution
    Given,
    $$\log_{\sqrt{8}}b=3\dfrac{1}{3}$$
    $$\implies b=(\sqrt{8})^{\large{\frac{10}{3}}}$$
    $$\implies b=({2^3})^{\tfrac12\times\large{\frac{10}{3}}}$$
    $$\implies b=2^5$$
    $$\implies b=32$$.
  • Question 8
    1 / -0
    $$\log_ee^5$$ is equal to- 
    Solution
    $$\log_ee^5=5\log_ee=5*1=5$$
  • Question 9
    1 / -0
    $$y = log \,x$$ is a solution of
    Solution
    $$y=log x$$
    $$y_1=\dfrac{1}{x}$$
    $$xy_1=1$$
    $$xy_2+y_1=0$$
    $$\therefore$$ $$y=log x$$ is a solution of $$xy_2+y_1=0$$.

  • Question 10
    1 / -0
    The value of $$(0.125)^{\frac {2}{3}}$$ is
    Solution
    $$ (0.125)^{\frac{2}{3}}$$

    $$0.125$$ could be written as $$(0.5)^3$$

    So given expression becomes'
     $$\Rightarrow (0.5^3)^{\frac{2}{3}}$$

    $$= (0.5)^2$$

    $$= 0.25$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now