Self Studies

Logarithm and Antilogarithm Test 12

Result Self Studies

Logarithm and Antilogarithm Test 12
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The value of the expression $$\displaystyle\dfrac{(\log x - \log y)(\log x^{2} + \log y^{2})}{(\log x^{2} - \log y^{2})(\log x + \log y)}$$ is equal to
    Solution
    Let $$E = \dfrac { (\log  x-\log  y)(\log  { x }^{ 2 }+\log  { y }^{ 2 }) }{ (\log  { x }^{ 2 }-\log  { y }^{ 2 })(\log  x+\log  y) } $$
    Using the formula, 
    $$\log a^x = x\log a$$
    Therefore, $$E=\dfrac { (\log  x-\log  y)(2\log  x+2\log  y) }{ (2\log  x-2\log  y)(\log  x+\log  y) }$$
    $$\Rightarrow E =\dfrac { (\log  x-\log  y)\times 2\times (\log  x+\log  y) }{ 2\times (\log  x-\log  y)\times (\log  x+\log  y) }$$
    $$\Rightarrow E= 1 $$
    Hence, option B is correct.
  • Question 2
    1 / -0
    If $$ \log_{10} x = a$$ and $$ \log_{10} y = b$$, then $$10^{a-1}$$ in terms of $$x$$ will be
    Solution
    Given, $$log _{10}x=a, \log _{10}y=b$$
    $$\implies 10^a=x$$
    $$\implies 10^{a-1}=\dfrac{x}{10}$$
    Hence, option D is correct.
  • Question 3
    1 / -0
    If $$ 3^{\log_{4}{x}}=27$$, then $$x$$ is equal to
    Solution
    $$ 3^{\log_{4}{x}}=27$$
    $$\Rightarrow { 3 }^{ \log _{ 4 }{ x }  }={ 3 }^{ 3 }$$
    Equating powers of $$3$$
    $$\log _{ 4 }{ x } =3$$
    Taking exponential of the above equation, we get
    $${ 4 }^{ 3 }=x$$
    $$\therefore x=64$$
  • Question 4
    1 / -0
    The value of $$\log_418$$ is equal to
    Solution
    $$log_{4}18$$

    $$=\dfrac{log18}{log4}$$

    $$=\dfrac{log2+log9}{2log2}$$

    $$=\dfrac{log2+2log3}{2log2}$$

    $$=\dfrac{log2}{2log2}+\dfrac{2log3}{2log2}$$

    $$=\dfrac{1}{2}+log_{2}3$$
    Since $$log_{2}3$$ is irrational.
    Hence 
    $$\dfrac{1}{2}+log_{2}3$$ is irrational.
    Therefore
    $$log_{4}18$$ is an irrational number.
  • Question 5
    1 / -0
    Evaluate the expression by using logarithm tables: $$ \dfrac{(17.42)^{2/{3}}\times 18.42}{\sqrt{126.37}}$$
    Solution
    Let $$x= \dfrac{(17.42)^{2/{3}}\times 18.42}{\sqrt{126.37}}$$
    Taking logarithm on both sides,
    $$ \log { x } =\log { (17.42)^{ 2/{ 3 } } } +\log { 18.42 } -\log { \sqrt { 126.37 }  } $$

    $$\log { x } =\dfrac { 2 }{ 3 } \log { 17.42 } +\log { 18.42 } -\dfrac { 1 }{ 2 } \log { (126.37) } $$

    $$ \log { x } =\dfrac { 2 }{ 3 } \log { (1.742\times 10) } +\log { (1.842\times 10) } -\dfrac { 1 }{ 2 } \log { (1.264\times { 10 }^{ 2 }) } $$

    $$ \log { x } =\dfrac { 2 }{ 3 } { (1.2410) } + { 1.2653 } -\dfrac { 1 }{ 2 } { (2.1018) } $$

    $$\log { x } =0.8273+1.2653-1.0509$$

    $$\log { x } =1.0417$$
    $$\Rightarrow x= \text{antilog }(1.0417)$$
    $$\Rightarrow x = 11.01$$
  • Question 6
    1 / -0
    If $$ \log_{10} x = a$$ and $$ \log_{10} y = b$$, then $$10^{2b}$$ in terms of $$y$$ is equal to 
    Solution
    Given, $$\log _{10}x=a, \log _{10}y=b$$
    $$ \Rightarrow 10^b=y$$
    Consider, $$ 10^{2b}$$
    $$=10^{b+b}$$
    $$=10^b.10^b$$
    $$=y.y$$
    $$=y^2$$.
  • Question 7
    1 / -0
    The number $$\displaystyle N= 6 \log_{10}2+\log _{10}31 $$ lies between two successive integers whose  sum is equal to:
    Solution
    $$N=\log _{ 10 }{ 64 } +\log _{ 10 }{ 31 } =\log _{ 10 }{ 1984 } $$
    Now, we know that $$\log_{10}{1000}=3$$ and $$\log_{10}{10000}=4$$.
    So, $$1000<1984<10000$$
    $$\Rightarrow\log_{10}{1000}<\log_{10}{1984}<\log_{10}{10000}$$
    $$\Rightarrow3<\log_{10}{1984}<4$$
    $$\Rightarrow3<\log _{ 10 }{ 64 } +\log _{ 10 }{ 31 }<4$$
    So, it lies between two successive integers $$3$$ and $$4$$.
    So, their sum is equal to $$3+4=7$$
    Hence. option $$B$$ is correct.
  • Question 8
    1 / -0
    If $$\log 3 = 0.477$$ and $$(1000)^x = 3$$, then the value of $$x$$ will be
    Solution
    Since, $$(1000)^x=3$$
    $$\therefore \log [(1000)^x] = \log3$$
    $$\Rightarrow x \log 1000 = \log 3$$
    $$\Rightarrow x \log (10^3) = \log 3$$
    $$\Rightarrow x \cdot 3\log 10 = \log 3$$
    $$\Rightarrow 3x = \dfrac {\log 3}{\log 10}$$
    $$\Rightarrow x = \dfrac{0.477}{3 \times 1} = 0.159$$
  • Question 9
    1 / -0
    If $$\log_{5} x = y$$, then value of $$5^{5y}$$ is equal to
    Solution
    $$\log_{5} x = y  \Rightarrow 5^{y} = x$$
    $$\therefore (5^{y})^5 = x^5 \Rightarrow 5^{5y} = x^{5}$$
  • Question 10
    1 / -0
    The value of $$x$$ satisfying the logarithm $$\log_{243} x = 0.8$$ is equal to
    Solution
    Given, $$\log_{243} x = 0.8$$
    $$ \Rightarrow  243^{0.8} = x$$
    $$\Rightarrow (3^5)^{4/5} = x$$
    $$ \Rightarrow  3^4 = x$$
    $$\Rightarrow x = 81$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now