Self Studies

Logarithm and Antilogarithm Test 13

Result Self Studies

Logarithm and Antilogarithm Test 13
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the mantissa of the logarithm of the number $$0.002359$$.
    Solution
    We have to find $$\log (0.002359)$$
    Firstly, we will write $$0.002359$$ in standard form.
    So, $$0.002359 = 2.359 \times 10^{-3}$$
    Here, characteristic is -3.

    To find the mantissa of $$\log (0.002359)$$, we first look in the row starting with 23. In this row, look at the number in the column headed by 5. The number is 3711.

    Now, move to the column of mean differences and look under the column headed by 9 in the row corresponding to 23. We see the number 17 here.

    Add this number to 3711. We get the number 3728. This is the required mantissa of $$\log (0.002359)$$.

    Mantissa of $$\log 23.598$$, $$\log 2.3598$$ and 0.023598 is the same (only characteristics are different).
  • Question 2
    1 / -0
    If $$\displaystyle \frac {\log 81}{\log 27} = x$$ and $$x$$ is expressed as $$\displaystyle 1 \frac {1}{m}$$, then $$m$$ is equal to
    Solution
    $$\displaystyle \frac {\log 81}{\log 27} = x$$
    $$\displaystyle \Rightarrow x = \dfrac {\log 3^4}{\log 3^3} = \dfrac {4 \log \: 3}{3 \log 3} = \dfrac {4}{3} = 1 \dfrac {1}{3}$$
    $$ \therefore m =3$$
  • Question 3
    1 / -0
    The logarithm form of $$\displaystyle 5^3 = 125$$ is equal to
    Solution
    Since, $$5^3=125$$
    $$\implies \log$$ of $$125$$ to base $$5$$ is $$3$$
    $$\implies \log_5 125 = 3$$         
  • Question 4
    1 / -0
    If $$\displaystyle \frac {\log 128}{\log 32} = x$$, then the value of $$x$$ will be
    Solution
    Given, $$\displaystyle \frac {\log 128}{\log 32} = x $$
    $$\Rightarrow  \dfrac{\log2^7}{\log2^5}=x$$    
    $$ \Rightarrow  \dfrac{7\log2}{5\log2}=x$$        (Using $$\log a^b=b\log a$$)
    $$\therefore x = \dfrac{7}{5}$$.
  • Question 5
    1 / -0
    If $$\displaystyle \log_x 2 = -1$$, then the value of $$x$$ is equal to 
    Solution
    Since, $$ \log _{ x }{ 2 } =-1$$
    $$\implies 2= { x }^{ -1 }$$
    $$\implies 2 = \dfrac{1}{x}$$
    $$\implies  x = \dfrac{1}{2}$$.
  • Question 6
    1 / -0
    Given $$\displaystyle 3^{x} = \frac {1}{9}$$ then $$x=?$$
    Solution
    Since, $$3^{-2}=\dfrac{1}{9}$$
    $$\implies \log$$ of $$\dfrac{1}{9}$$ to base $$3$$ is $$-2$$     
    $$\implies \log_3\dfrac{1}{9}= -2$$.
  • Question 7
    1 / -0
    If $$\displaystyle \frac {\log 225}{\log 15} = \log x$$, then the value of $$x$$ is equal to
    Solution
    Given, $$\displaystyle \frac {\log  225}{\log  15} = \log  x$$
    $$\implies \dfrac{\log 15^2}{\log 15}=\log x$$  
    $$\implies \dfrac{2\log 15}{\log 15}=\log x$$        (Using $$\log a^b=b\log a$$)
    $$\implies \log x= 2$$
    $$\implies \log x= \log 100$$
    $$\implies x=100$$.
  • Question 8
    1 / -0
    If $$\displaystyle \log_{10} 8 = 0.90$$, then the value of $$\displaystyle \log_{10}0.125$$ is 
    Solution
    $$\log_{10}8 = 0.90$$
    $$\log_{10}0.125 = \log_{10} \dfrac{1}{8} = \log_{10} 8^{(-1)} =-\log_{10}8 = -0.9$$       (Using $$\log a^b = b \log a$$)
  • Question 9
    1 / -0
    The value of $$\displaystyle \log (a)^3 \div \log a$$ is equal to
    Solution
    Let, $$x = \log (a)^3 \div \log a$$     
    $$\therefore x = \dfrac{3\log a}{\log a} = 3$$               (Using $$\log a^b = b \log a $$)
  • Question 10
    1 / -0
    If  $$\log_{10} x = 2a$$ and $$\displaystyle \log_{10} y = \dfrac {b}{2}$$, then $$\displaystyle 10^{2b + 1}$$ in terms of $$y$$ is $$\displaystyle my^4$$. Then what is the value of $$m$$?
    Solution
    Since, $$ \log _{ 10 }{ x } = a$$ and $$ \log _{ 10 }{ y } = \dfrac { b }{ 2 } $$
    $$\implies x = { 10 }^{ a }$$ and $$ y={ 10 }^{ \dfrac { b }{ 2 }  }$$ 
    Consider, $${ 10 }^{ 2b+1 } $$
    $$= { 10 }^{ 2b } \cdot 10$$
    $$= { 10 }^{ 4(\dfrac { b }{ 2 } ) } \cdot 10$$
    $$= { y }^{ 4 } \cdot 10 $$
    Hence, C will be correct answer.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now