Self Studies

Logarithm and Antilogarithm Test 16

Result Self Studies

Logarithm and Antilogarithm Test 16
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The value of $$(-3)^0 - (-3)^3 - (-3)^{-1} + (-3)^4 - (-3)^{-2}$$ is
    Solution
    Given expression is $$(-3)^0 - (-3)^3 - (-3)^{-1} + (-3)^4 - (-3)^{-2}$$

    Using the law of exponent, $$a^{-m}=\dfrac{1}{a^m}$$, we can write it as:

    $$=1 - (-27) - \left(-\cfrac {1}{3}\right)$$ $$+ 81 - \cfrac 19$$

    $$= 1 + 27 + \cfrac {1}{3} + 81 - \cfrac {1}{9}$$

    $$=109 + \cfrac {2}{9}\, $$

    $$=\, 109 \displaystyle \frac {2}{9}$$

    Hence, option A is correct.
  • Question 2
    1 / -0
    The value of $$512^\frac {-2}{9}$$ is
    Solution
    $$\begin{aligned}{}{\left( {512} \right)^{ - {\textstyle{2 \over 9}}}} &= {\left( {{2^9}} \right)^{ - {\textstyle{2 \over 9}}}}\\&={2^{9 \times \frac{{ - 2}}{9}}} \quad\quad\quad\because[(a^b)^c=a^{bc}]\\&= {2^{ - 2}}\\ &= \frac{1}{4}\end{aligned}$$

    Hence, option $$D$$ is correct.
  • Question 3
    1 / -0
    $$\log_4 $$1 is equal to
    Solution
    $$log_a 1 = m$$
    $$\Rightarrow a^m = 1 a^0    \Rightarrow m = 0$$
  • Question 4
    1 / -0
    Value of $$\displaystyle \log _{4}18 $$ is:
    Solution
    $$\log_{4}{18}=\log_{2^{2}}{(2.3^{2})}=\dfrac{1}{2}\log_{2}(2.3^{2})$$
    $$=\dfrac{1}{2}\left [ \log_{2}{2}+\log_{2}{3^{2}} \right ]=\dfrac{1}{2}\left [ 1+2.\log_{2}{3} \right ]$$

    $$\log_{2}{3}$$ is an irrational number.

    Hence, $$\dfrac{1}{2}\left [ 1+2.\log_{2}{3} \right ]$$ is also an irrational number.
  • Question 5
    1 / -0
    The value of $$[ 5 (8^{\tfrac 13} + 27^{\tfrac 13} )^3 ]^{\tfrac 14}$$ is
    Solution
    $$\left [ 5 \left ( 2^{3\times \tfrac {1}{3}}+ 3^{3\times \tfrac {1}{3}} \right )^3 \right ]^{\tfrac 14}$$

    $$=[ 5 (2 + 3)^3 ] ^{\tfrac 14}$$

    $$= (5 \times 5^3)^{\tfrac 14} = 5^{4\times \tfrac {1}{4}} = 5$$
  • Question 6
    1 / -0
    Value of the expression $$\displaystyle \log _{2}\sqrt[5]{2.\sqrt[3]{2\sqrt{2}}}$$ is
    Solution
    $$\log_{2}\left ( \sqrt[5]{2.\sqrt[3]{2\sqrt{2}}} \right )=$$
    $$=\log_{2}\left ( \sqrt[5]{2.({2^{3/2}})^{1/3}} \right )$$
    $$=\log_{2}\left ( \sqrt[5]{2.2^{1/2}} \right )$$
    $$=\log_{2}\left ( 2^{3/2} \right )^{1/5}=\dfrac{1}{5}\, \log_{2}.{2^{3/2}}$$
    $$=\dfrac{3}{10}.\log_{2}{2}=\dfrac{3}{10}=0.3$$
  • Question 7
    1 / -0
    The value of $$(6^{-1} -7^{-1})^{-1} (5^{-1} -4^{-1})^{-1}$$ is equal to
    Solution
    Given expression is $$\left({ 6 }^{ -1 }-7^{ -1 }\right)^{ -1 }\left(5^{ -1 }-4^{ -1 }\right)^{ -1 }$$.

    From laws of exponents, we know that $$a^{-m}=\left(\dfrac{1}{a}\right)^m$$

    Hence, the given expression can be simplified as:
    $$\left(\cfrac { 1 }{ 6 } -\cfrac { 1 }{ 7 } \right)^{ -1 }\left(\cfrac { 1 }{ 5 } -\cfrac { 1 }{ 4 } \right)^{ -1 }$$

    Solving the fractions, we get:
    $$\cfrac { 1 }{ 6 } -\cfrac { 1 }{ 7 }=\cfrac{1}{42}$$
    and
    $$\cfrac { 1 }{ 5 } -\cfrac { 1 }{ 4 }=\cfrac{-1}{20}$$

    Hence, the expression simplifies to:
    $$\left(\cfrac { 1 }{ 42 } \right)^{ -1 }\left(-\cfrac { 1 }{ 20 } \right)^{ -1 }$$

    Again applying the law of exponent, $$a^{-m}=\left(\dfrac{1}{a}\right)^m$$, we get:

    $$(42)^1(-20)^1$$

    $$\Rightarrow 42\times (-20)=-840$$

    Hence, $$\left({ 6 }^{ -1 }-7^{ -1 }\right)^{ -1 }\left(5^{ -1 }-4^{ -1 }\right)^{ -1 }=-840$$.
  • Question 8
    1 / -0
    If  $$\left (\dfrac {a}{b}\right )^{x-1}=\left (\dfrac {a}{b}\right )^{x-3}$$ then the value of $$x$$ is
    Solution
    Given,

    $$\left (\dfrac {a}{b}\right )^{x-1}=\left (\dfrac {a}{b}\right )^{-(x-3)}$$

    as the terms are same we can equate the powers/exponents of the terms 

    $$\Rightarrow x-1=-(x-3)$$

    $$\Rightarrow x-1=-x+3$$

    $$\Rightarrow 2x=4$$

    $$\Rightarrow x=2$$
  • Question 9
    1 / -0
    SImplify: $$(256)^{0.16} \times (256)^{0.09}$$
    Solution
    $$(256)^{0.16} \times (256)^{0.09}$$

    $$=(256)^{(0.16 + 0.09)}$$

    $$= (256)^{0.25} = (256)^{\tfrac {25}{100}} = (256)^{\tfrac 14}$$

    $$= (4^4)^{\tfrac 14} = 4^1 = 4$$
  • Question 10
    1 / -0
    The value of $$[10^{150}\, \div\, 10^{146} ]$$ is
    Solution
    $$(10)^{150} \div (10)^{146} =  \cfrac {(10)^{150}}{(10)^{146}}$$ $$= 10^{(150 - 146)} = 10^4 = 10000$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now