Self Studies

Logarithm and Antilogarithm Test 17

Result Self Studies

Logarithm and Antilogarithm Test 17
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The value of $$\displaystyle \log_{2}\left [ \log_{2}\left \{ \log_{3}\left ( \log_{3}27^{3} \right ) \right \} \right ]$$ is equal to
    Solution
    Required value of $$\displaystyle \log _{2}\left [ \log _{2}\left \{ \log _{3}\left ( \log _{3}27^{3} \right ) \right \} \right ]$$
    $$=$$ $$\displaystyle \log _{2}\left [ \log _{2}\left \{ \log _{3}\left ( \log _{3}3^{9} \right ) \right \} \right ]$$
    $$=$$ $$\displaystyle \log _{2}\left [ \log _{2}\left \{ \log _{3}\left (9\cdot  \log _{3}3 \right ) \right \} \right ]$$      
    $$=$$  $$\displaystyle \log _{2}\left [ \log _{2} \left \{\log _{3}\cdot 9 \right \}\right ]$$      ....$$\displaystyle \left [ \because \log _{3}3=1 \right ]$$
    $$=$$ $$\displaystyle \log _{2} \left [ \log _{2}\left \{ \log _{3}3^{2} \right \} \right ]$$
    $$=$$ $$\displaystyle \log _{2} \left [ \log _{2} 2\cdot \log _{3} 3\right ]$$
    $$=$$ $$\displaystyle \log _{2}\left [ \log _{2}2\right ]$$      ....$$\displaystyle \left [ \because \log _{2}2=1 \right ]$$
    $$=$$ $$\displaystyle \log _{2}$$ $$1 = 0$$
  • Question 2
    1 / -0
    If there are $$n$$ zeros after the decimal point, then the characteristic of that number will be
    Solution
    For number less than $$1,$$ if there are $$n$$ zeroes after the decimal point, then the characteristics of that number will be $$-(n+1).$$
    and For number  greater than $$1,$$ if  there are $$n$$ number of zeroes are on the left sides of the digits then characteristics will be $$(n+1).$$
    Hence, C is the correct option.
  • Question 3
    1 / -0
    Simplify : $$(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$$ is-
    Solution
    Law of exponents,
    Given - $$(6^{-1}-8^{-1})^{-1}+(2^{-1}-3^{-1})^{-1}$$
    $$=\left(\dfrac{1}{6}-\dfrac{1}{8}\right)^{-1}+\left(\dfrac{1}{2}-\dfrac{1}{3}\right)^{-1}$$
    $$=\left(\dfrac{8-6}{6\times 8}\right)^{-1}+\left(\dfrac{3-2}{2\times 3}\right)^{-1}$$
    $$=\left(\dfrac{2}{36\times 8}\right)^{-1}+\left(\dfrac{1}{2\times 3}\right)^{-1}$$
    $$=\left(\dfrac{1}{24}\right)^{-1}+\left(\dfrac{1}{6}\right)^{-1}$$
    $$=24+6$$
    $$=30$$
    Hence, option B is correct.
  • Question 4
    1 / -0
    The value of $$\log_{10} 0.0006024$$ is equal to
    Solution
    $$\log_{10}0.0006024$$
    Characteristics$$=-4$$
    For mantissa ,read from the table $$6024.$$
    Mantissa$$=7799$$ 
    Thus, $$\log_{10}0.0006024=$$ characteristics of $$0.0006024+$$ mantissa of $$0.0006024$$
    $$=-4+0.7799$$
    $$=\bar4.7799$$
    Hence, C is the correct option.
  • Question 5
    1 / -0
    The logarithm of number lying between $$0$$ and $$1$$ is
    Solution
    From the graph, we can see that logarithmic value of number lying between $$0$$ and $$1$$ is negative.
    Hence, B is the correct option.

  • Question 6
    1 / -0
    If $$3^{n-2}=\dfrac{1}{81},n=$$
    Solution
    Given, $${3}^{n-2}=\dfrac {1}{81} $$
    $$\Rightarrow 3^{n-2}=\dfrac {1}{3^4}$$
    $$\Rightarrow 3^{n-2}=3^{-4}$$
    $$\Rightarrow n-2=-4$$
    $$\Rightarrow n=-2$$
  • Question 7
    1 / -0
    Using logarithm table, determine the value of $$\log_{10}0.5432$$.
    Solution
    $$\log_{10}0.5432$$
    Characteristics$$=-1$$
    For mantissa ,read from the table $$5432.$$
    Mantissa$$=7350$$ 
    Thus, $$\log_{10}0.5432=$$ characteristics of $$0.5432+$$ mantissa of $$0.5432$$
    $$=-1+0.7350$$
    $$=\bar1.7350$$
    Hence, A is the correct option.
  • Question 8
    1 / -0
    If $$x=\log _{ a }{ bc } ,y=\log _{ b }{ ca } ,z=\log _{ c }{ ab } $$, then the value of $$\dfrac { 1 }{ 1+x } +\dfrac { 1 }{ 1+y } +\dfrac { 1 }{ 1+z } $$ will be
    Solution
    Now, $$1+x=\log _{ a }{ a } +\log _{ a }{ bc } =\log _{ a }{ abc } $$
    $$\Rightarrow \dfrac { 1 }{ 1+x } =\log _{ abc }{ a } $$
    Similarly, $$\dfrac { 1 }{ 1+y } =\log _{ abc }{ b } $$ and $$\dfrac { 1 }{ 1+z } =\log _{ abc }{ c } $$
    $$\therefore \dfrac { 1 }{ 1+x } +\dfrac { 1 }{ 1+y } +\dfrac { 1 }{ 1+z } $$
                        $$=\log _{ abc }{ a } +\log _{ abc }{ b } +\log _{ abc }{ c } $$
                        $$=\log _{ abc }{ abc } =1$$
  • Question 9
    1 / -0
    If $$\displaystyle { log }_{ 5 }{ log }_{ 5 }{ log }_{ 2 }x=0$$, then the value of $$x$$ is
    Solution
    Given, $$\displaystyle { log }_{ 5 }{ log }_{ 5 }{ log }_{ 2 }x=0$$
    $$\displaystyle \Rightarrow \quad { log }_{ 5 }{ log }_{ 2 }x=50$$
    $$\displaystyle \Rightarrow \quad { log }_{ 5 }{ log }_{ 2 }x=1\Rightarrow { log }_{ 2 }x=5$$
    $$\displaystyle \Rightarrow x={ 2 }^{ 5 }=32$$
  • Question 10
    1 / -0
    Find the value of $$\log_{10} {\dfrac{64^{2.1}\times 81^{4.2}}{49^{3.4}}}$$ using log table
    Solution
    $$\log_{10}{64^{2.1}}+\log_{10}{81^{4.2}}-\log_{10}{49^{3.4}}$$
    $$= 2.1\log_{10}{64}+4.2\log_{10}{81}-3.4\log_{10}{49}$$
    $$=2.1\log_{10}{2^{6}}+4.2\log_{10}{3^{4}}-3.4\log_{10}{7^{2}}$$
    $$=2.1\times6\times(0.303)+4.2\times4\times(0.477)-3.4\times2\times(0.845)$$
    $$=2.1\times6\times(0.303)+4.2\times2\times(0.954)-3.4\times2\times(0.845)$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now