Self Studies

Logarithm and Antilogarithm Test 18

Result Self Studies

Logarithm and Antilogarithm Test 18
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the value of $${\log_{10} 72} + {\log_{10} {\dfrac{1}{8}}}$$ using log table
    Solution
    $$\log_{10}{72}+\log_{10}\left (\dfrac{1}{8}  \right )$$
    $$=\: \log_{10}{\left (72\times \dfrac{1}{8}  \right )}=\log_{10}{9}=\log_{10}{3^{2}}$$
    $$=\: 2.\log_{10}{3}=2(0.477)=0.954$$
  • Question 2
    1 / -0
    The value of $$\log_{10} 8$$ is equal to
    Solution
    $$\log_{10}8=\log_{10}2^3=3\log_{10}2$$
    $$=3\times 0.301$$   $$(\log_{10}2=0.301)$$
    $$=0.903$$
    Hence, D is the correct option.
  • Question 3
    1 / -0
    Find the value of $$\dfrac {\log_{10} 72}{\log_{10} 8}$$ using log table
    Solution
    $$\dfrac{\log_{10}{72}}{\log_{10}{8}}=\dfrac{\log_{10}{(8\times9)}}{\log_{10}{8}}=\dfrac{\log_{10}{8}+\log_{10}{9}}{\log_{10}{8}}$$
    $$=1+\dfrac{\log_{10}{3^{2}}}{\log_{10}{2^{3}}}=1+\dfrac{2\log_{10}{3}}{3\log_{10}{2}}$$
    $$=1+\dfrac{2.(0.477)}{3.(0.301)}=1+\dfrac{(0.954)}{(0.903)}$$
  • Question 4
    1 / -0
    Find the value of $$\log_{10} 72$$ using log table
    Solution
    $$\log_{10}{72}=\log_{10}(2^{3}.3^{2})$$
    $$=\: \log_{10}{2^{3}}+\log_{10}{3^{2}}$$
    $$=\: 3.\log_{10}{2}+2.\log_{10}{3}$$
    $$=\: 3(0.301)+2(0.4771)$$
    $$=\: 0.903+0.954$$
  • Question 5
    1 / -0
    If $$\log 625 = k \log 5$$, then the value of $$k$$ is ____
    Solution
    Given, $$\log 625=k \log 5$$

    $$\Rightarrow \log (5^4)=k \log 5$$

    $$\Rightarrow 4\log 5=k \log 5$$

    $$\Rightarrow k=4$$

    Option $$B$$ is correct. 
  • Question 6
    1 / -0
    If $$\dfrac{\log\, x}{l+m-2n} = \dfrac{\log\, y}{m+n-2l} = \dfrac{\log\, x}{n+l-2m}$$, then $$xyz$$ is equal to 
    Solution
    Let $$\dfrac{\log x}{l+m-2n}=\dfrac{\log y}{m+n-2l}=\dfrac{\log z}{n+l-2m}=k(say)$$

    So, we get

    $$\log x = k(l+m-2n)$$ ....... $$(i)$$
    $$\log y = k(m+n-2l)$$ ....... $$(ii)$$
    $$\log z = k(n+l-2m)$$ ....... $$(iii)$$

    $$\therefore \log x+\log y + \log z = k(l+m-2n)+k(m+n-2l)+k(n+l-2m)$$
    $$\Rightarrow \log x+\log y + \log z = kl+km-2kn+km+kn-2kl+kn+kl-2km$$
    $$\Rightarrow \log (xyz) = 0$$

    $$\Rightarrow \log xyz = \log 1$$

    $$\Rightarrow xyz = 1$$
  • Question 7
    1 / -0
    If $$\log_{x} 484 - \log_{x}4 + \log_{x}14641 - \log_{x}1331 = 3$$, then the value of $$x$$ is
    Solution
    As $$\log_{x} 484 - \log_{x}4 + \log_{x}14641 - \log_{x}1331 = 3$$

    $$\Rightarrow \log_{x}\left (\dfrac {484}{4}\right ) + \log_{x} 14641 - \log_{x} 1331 = 3$$

    $$\Rightarrow \log_{x} 11^{2} + \log_{x} 11^{4} - \log_{x} 11^{3} = 3$$

    $$\Rightarrow (2 + 4 - 3)\log_{x} 11 = 3\Rightarrow \log_{x}11 = 1$$

    $$\Rightarrow 11$$

    Hence choice (c) is correct.
  • Question 8
    1 / -0
    Simplify the following using law of exponents.
    $$9^2 \times 9^{18}\times 9^{10}$$
    Solution
    We know that,

    $$a^{m}\times a^{n}\times a^{p}=a^{m+n+p}$$

    Therefore,

    $$9^{2}\times 9^{18}\times 9^{10}=9^{2+18+10}$$

                              $$=9^{30}$$
  • Question 9
    1 / -0
    The value of $$[2-3(2-3)^{-1}]^{-1}$$ is __________.
    Solution
    $$=$$$$[2-3(2-3)^{-1}]^{-1}$$ 
    $$=$$$$[2-3(-1)^{-1}]^{-1}$$ 
    $$=$$$$[2-3(-1)]^{-1}$$ 
    $$=$$$$[2+3]^{-1}$$
    $$=$$$$\dfrac{1}{5}$$
  • Question 10
    1 / -0
    Which of the following values are equal?
    (P) $$1^{4}$$ (Q) $$4^{\circ}$$ (R) $$0^{4}$$ (S) $$4^{1}$$.
    Solution
    (P)  $$1^{4} = 1$$
    (Q)  $$4^{0} = 1$$
    (R)  $$0^{4} = 0$$
    (S)  $$4^{1} = 4$$

    Hence, $$P$$ and $$Q$$ are equal.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now