Self Studies

Logarithm and Antilogarithm Test 19

Result Self Studies

Logarithm and Antilogarithm Test 19
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\log {3} + \log {5}$$ is equal to..........
    Solution
    $$\textbf{Step 1 : Use the properties of log }$$

                      $$\text{Given , }\log 3+\log5$$

                      $$=\log(3\times5)$$                   [ $$\boldsymbol{\because \log a+\log b =\log(a \times b)}$$]

                      $$=\log 15$$

    $$\textbf{Hence, A is the correct option.}$$
  • Question 2
    1 / -0
    Simplify the following using law of exponents for $$a=2, x=1,y=1,z=1$$
    $$a^x\times a^y\times a^z$$
    Solution
    we know,

    $$a^{x}*a^{y}*a^{z}=a^{x+y+z}$$

    $$\therefore2^{1+1+1}$$

    $$=2^{3}$$

    $$=8$$
  • Question 3
    1 / -0
    If $$x^2+y^2=25$$ , then $$log_5 \begin {bmatrix} Max (3x+4y) \end {bmatrix}$$ is
    Solution
    $$log_5(3x+4y)$$

    Let $$s=3x+4y$$
    given $$x^2+y^2=25$$
    then $$S=3x+4 \sqrt{25-x^2}$$
    $$\dfrac{ds}{dx}=3+4 \dfrac{1}{2\sqrt(25-x^2)}$$
    $$3=\dfrac{4x}{\sqrt{25-x^2}}$$
    $$9(25-x^2)=16x^2$$
    $$x=\pm 3$$

    and $$x^2+y^2=25$$
    $$y^2=25-x^2$$
    $$y=\pm 4$$
    $$\dfrac{d^2s}{dx^2}<0$$ ; At $$x=3 \,and\, y=4$$

    $$S=3x+4y=3(3)+4(4)=25$$
    $$log_5 (3x+4y)=log_5(s)=log_5(25)=log_5(5^2)=2$$

  • Question 4
    1 / -0
    Simplify the following using law of exponents.
    $$(-3)^3\times (-3)^{10}\times (-3)^7$$
    Solution
    we know,

    $$a^{m}*a^{n}*a^{p}=a^{m+n+p}$$

    so,

    $$(-3)^{3}*(-3)^{10}*(-3)^{7}=(-3)^{3+10+7}$$

    $$=(-3)^{20}$$

    $$=(3)^{20}$$




  • Question 5
    1 / -0
    $$\log_8 {64}$$ is equal to_____
    Solution
    $$\log_8(64)$$
    $$=\log_8(8^2)$$
    $$=2\log_88$$
    $$=2$$                     ($$\because \log_aa=1)$$
    Hence, A is the correct option.
  • Question 6
    1 / -0
    $$\log_4{64}$$ is equal to____
    Solution
    $$\log_4(64)$$
    $$=\log_4(4^3)$$
    $$=3\log_44$$
    $$=3$$                              ($$\because \log_aa=1)$$
    Hence, B is the correct option.
  • Question 7
    1 / -0
    If $$\displaystyle \int{ \frac{(\sqrt{x})^5}{(\sqrt{x})^7 + x^6} } dx = a\ log \left( \frac{x^k}{1 + x^k} \right) + c$$, then a and k are
    Solution
    Given
    $$ \int \dfrac{(\sqrt{x})^5}{(\sqrt{x})^7+x^6} dx = a log \left ( \dfrac{x^k}{1+x^k} \right )+c $$
    L.H.S Taking $$ x^6 $$ common from denominator
    $$ \displaystyle \Rightarrow \int \dfrac{(\sqrt{x})^5}{x^6 \left ( \dfrac{(\sqrt{x})^7}{x^6}+1 \right )}dx$$
    $$ \displaystyle  \Rightarrow  \int \dfrac{1}{(\sqrt{x})^7 (\dfrac{1}{\sqrt{x}})^5 + 1 }dx$$
    Now Let $$ \dfrac{1}{(\sqrt{x})^5} = t $$
    $$ \dfrac{-5}{2(\sqrt{x})^7} .dx = dt $$
    $$\displaystyle \Rightarrow \int \frac{-2}{3}.\frac{1}{(t+1)}dt $$
    $$ \Rightarrow \dfrac{-2}{5} ln (t+1)+c $$ 
    put $$ t = \dfrac{1}{(\sqrt{x})^5} $$
    $$ \Rightarrow \dfrac{-2}{5} ln \left ( \dfrac{1+(\sqrt{x})^5}{(\sqrt{x})^5} \right )+c \Rightarrow \dfrac{2}{5} ln \left ( \dfrac{(\sqrt{x})^5}{1+(\sqrt{x})^5} \right ) +c $$
    on comparing $$ \boxed{a = t\dfrac{2}{5}} \boxed {k = 5/2}$$

  • Question 8
    1 / -0
    If the mantissa of $$\log 2125 =3.3273$$, find the mantissa of $$\log21.25$$
    Solution

  • Question 9
    1 / -0
    $$\log_3 {27}$$ is equal to____
    Solution
    $$\textbf{Step 1 : Using the principle properties of logarithm}$$
                    $$\boldsymbol{\log_a m^n = n \log_a m\, ; \, where \,\,m, a > 0,\neq1}$$

                   $$\text{Given : }\log_3 27$$

                   $$= \log_3 3^3$$

     $$\textbf{Step 2 : Using the principle properties of logarithm}$$
                  $$\boldsymbol{\log_a a = 1 ; \, where \,\,a > 0,\neq1}$$

                  $$= 3 \log_3 3 = 3$$
  • Question 10
    1 / -0
    $$\log {5} + \log {8}$$ is equal to........
    Solution
    $$\textbf{Step 1 : Use properties of logarithm }$$

                     $$\text{Given , }\log 5+\log8$$

                     $$=\log(5\times8)$$                   $$\boldsymbol{[\because \log a+\log b =\log(a \times b)]}$$

                     $$=\log 40$$

    $$\textbf{Hence, A is the correct option.}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now