Self Studies

Logarithm and Antilogarithm Test 2

Result Self Studies

Logarithm and Antilogarithm Test 2
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The value of $$\log_2 \displaystyle \frac{1}{8}$$ is equal to
    Solution
    Given, $$ \log _{ 2 }{ \frac { 1 }{ 8 }  } =x$$
    Convert in exponential form,
    $$ \frac { 1 }{ 8 }  = { 2 }^{ x }$$
    $$2^{-3}=2^{x}$$
    $$ \therefore x = -3$$
  • Question 2
    1 / -0
    The exponential form of $$\log_8 0.125 = -1$$ is $$8 ^{-m} = 0.125$$. Then value of $$m$$ is
    Solution
    $$ \log _{ 8 }{ 0.125 }  = -1\\ \implies 0.125 = { 8 }^{ -1 }$$
    Also, by given we have
    $$8^{-m} = 0.125$$
    Therefore $$m\ =\ 1$$
  • Question 3
    1 / -0
    The value of $$\log_5\ 125$$ is equal to
    Solution
    $$\text {Consider},  \log _{ 5 }{ 125 } =x\\ \implies 125 = { 5 }^{ x }\\ \implies 5^3 =5^x \\\implies x = 3 $$
  • Question 4
    1 / -0
    The logarithm of $$27$$ to the base $$9$$ is $$\displaystyle \frac{3}{m}$$. Then the value of $$m$$ is equal to 
    Solution
    Since, $$\log _9 {27}= \displaystyle \frac {3}{m}$$        ...(1)
    Let $$ \log _{ 9 }{ 27 } = x$$
    Converting in exponential form,
    $$ 27 = { 9 }^{ x }$$
    $${ 3 }^{ 3 } = { 3 }^{ 2x }$$
    $$ x=\displaystyle \frac { 3 }{ 2 }  $$                   ...(2)
    Comparing equations (1) and (2), we get
    $$m=2$$
  • Question 5
    1 / -0
    The value of $$\log_{10}0.01$$ is equal to 
    Solution
    $$\log _{ 10 }{ 0.01= } \log _{ 10 }{ { 10 }^{ -2 } } $$
    $$\implies \log _{ 10 }{ 0.01= } -2$$.
  • Question 6
    1 / -0
    If exponential form of $$\log_{10} 0.01 = -2$$ is $$10^{m} = 0.01$$, then value of $$m$$ is equal to
    Solution
    $$ \log _{ 10 }{ 0.01 } = -2 \Rightarrow 0.01 = { 10 }^{ -2 } $$
    $$\therefore m=-2$$
  • Question 7
    1 / -0
    If $$\log_{x} 2 = -1$$ then value of $$2x$$ is equal to 
    Solution
    Given, $$\log _{ x }{ 2 } = -1$$

    Converting in exponential form,

    $$ 2 = { x }^{ -1 }$$

    $$ 2 = \displaystyle \dfrac { 1 }{ x } $$

    $$\therefore x=\displaystyle  \dfrac {1}{2}$$

    $$2 x=1$$
  • Question 8
    1 / -0
    Value of $$\sqrt [4]{(81)^{-2}}$$ is
    Solution
    As given $$\sqrt[4]{{(81)}^{-2}}$$ 

    $$=\sqrt[4]{\dfrac{1}{\left ( 81 \right )^{2}}}$$

    $$=\sqrt[4]{\dfrac{1}{\left ( \left (9  \right )^{2} \right )^{2}}}$$

    $$=\dfrac{\left ( 1 \right )^{\frac{1}{4}}}{\left ( \left ( 9 \right )^{4} \right )^{\frac{1}{4}}}$$

    $$=\dfrac{1}{9}$$
  • Question 9
    1 / -0
    Value of $$\displaystyle\frac{{2}^{100}}{2}$$ is-
    Solution

    $$\Rightarrow \dfrac{{2}^{n}}{2}={2}^{n-1}$$

    $$\Rightarrow \dfrac{{2}^{100}}{2}={2}^{100-1}={2}^{99}$$
    Hence option 'D' is correct.

  • Question 10
    1 / -0
    What is the value of $$2^{0.64}*2^{0.36}$$ ?
    Solution
    $$2^{0.64}*2^{0.36} =2^{0.64+0.36} = 2^{1.00} = 2^1=2\\ (\because a^m*a^n=a^{m+n})$$ 
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now