Self Studies

Logarithm and Antilogarithm Test 20

Result Self Studies

Logarithm and Antilogarithm Test 20
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\log_2 {64}$$ is equal to____
    Solution
    $$\log_2(64)$$
    $$=\log_2(2^6)$$
    $$=6\log_22$$
    $$=6$$                       ($$\because\log_aa=1)$$
    Hence, D is the correct option.
  • Question 2
    1 / -0
    Simplify: $$(-1)^{19}+(-1)^{20}+(2)^5$$
    Solution
    $$(-1)^{19}+(-1)^{20}+(2)^5$$
    $$=(-1)+(1)+2\times2\times2\times2\times2$$
    $$=32$$
  • Question 3
    1 / -0
    If $$t = -2$$ then $$log_4 \dfrac{t^2}{4}-2 \, log_4 \, 4t^4 \, =$$
    Solution

    $$\textbf{Step 1 : The principle properties of logarithm:} \log_am^n = n\log_am \left( \textbf{Where m,a>0 and a}\neq 1\right)$$

    Consider,

    $${{\log }_{4}}\dfrac{{{t}^{2}}}{4}-2{{\log }_{4}}4{{t}^{4}}$$

    Put $$t=-2$$ in above expression, We get

    $$ ={{\log }_{4}}\dfrac{{{\left( -2 \right)}^{2}}}{4}-2{{\log }_{4}}4{{\left( -2 \right)}^{4}} $$

    $$ ={{\log }_{4}}\left( \dfrac{4}{4}\right)-2{{\log }_{4}}\left(4\times 16\right) $$

    $$ ={{\log }_{4}}1-2{{\log }_{4}}64 $$

    $$ =0-2{{\log }_{4}}{{4}^{3}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( \because {{\log }_{a}}1=0 \right) $$

    $$ =-2\times 3{{\log }_{4}}4\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( \because {{\log }_{a}}{{m}^{n}}=n{{\log }_{a}}m \right) $$

    $$ =-6\,\,\,\,\,\,\,          \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( \therefore {{\log }_{a}}a=1 \right) $$

     

    Hence,$$-6$$ is the answer.

  • Question 4
    1 / -0
    The logarithm of $$0.0625$$ to the base $$2$$ is:
    Solution
    $$\log_{2}{\cfrac{625}{10000}}$$
    $$=\log_{2}{\cfrac{1}{16}}$$
    $$=\log_{2}{(16)^{-1}}$$
    $$=\log_{2}{(2)^{-4}}$$
    $$=-4\log_{2}{2}$$
    $$= -4$$
  • Question 5
    1 / -0
    If mantissa of logarithm of 719.3 to the base 10 is 0.8569 , then mantissa of logarithm  of 71.93 is
    Solution
    Mantissa of logarithm of $$719.3$$ to base $$10$$ is $$0.8569$$
    Then, mantissa of logarithm of $$71.93$$ is also $$0.8569$$
    As, $$\log_{10}{(719.3)}=2+(0.8569)$$(mantissa)
    So, $$\log_{10}{(71.93)}=1+(0.8596)$$ (mantissa)
  • Question 6
    1 / -0
    The value of $${\log _b}a.{\log _c}b.{\log _a}c$$  is 
    Solution

  • Question 7
    1 / -0
    If $$2y = log(12-5x-3x^2)$$ takes all real values then $$x$$ belongs to 
    Solution
    $$2y=\log\left(12-5x-3x^2\right)$$
    $$(12-5x-3x^2)>0$$
    $$3x^2+5x-12<0$$
    $$3x^2+9x-4x-12<0$$
    $$3x\left(x+3\right)-4\left(x+3\right)<0$$
    $$\left(x+3\right)\left(3x-4\right)<0$$
    $$x\epsilon \left(-3,{4/3}\right)$$
  • Question 8
    1 / -0
    If $$a=\log_35 $$ and $$b= \log_725$$ then correct option is:
    Solution
    $$a=\log _{ 3 }{ 5 } =\cfrac { \log { 5 }  }{ \log { 3 }  } ,b=\cfrac { \log { 25 }  }{ \log { 7 }  } =\cfrac { \log { 5^2 }  }{ \log { 7 }  }=\cfrac { 2\log { 5 }  }{ \log { 7 }  } $$

    $$ \cfrac { a }{ b } =\cfrac { \log { 5 }  }{ \log { 3 }  } \times \cfrac { \log { 7 }  }{ 2\log { 5 }  } =\cfrac { 1 }{ 2 } \log _{ 3 }{ 7 } =\log _{ 3 }{ (\sqrt { 7 } ) } $$

    $$ Now,\sqrt { 7 } <3,so\quad \cfrac { a }{ b } <1$$

    $$ \cfrac { a }{ b } <1\  =>a<b$$
  • Question 9
    1 / -0
    $$\dfrac{8^{-1}\times 5^3}{2^{-4}\times 625}=$$
    Solution

    $$\\(\frac{8^{-1}\cdot 5^3}{2^{-4}\cdot 625})\\= (\frac{2^4\cdot 5^3}{8\cdot 5^4})\\= (\frac{16}{8\cdot 5})\\=(\frac{2}{5})$$

  • Question 10
    1 / -0
    Solve for x:
    $$ \log(x+3)+\log(x-3)=\log 16$$
    Solution

    $$Since, \ \log[(x+3)(x-3)]=log16\\x^2-3^2=16\\x^2=16+9\\=x^2=25\\\therefore\>x=\>\pm5\\but\>x\neq\>-5\>as\>log\>has\>domain\>of\>only\>+ve\>values\\\therefore\>x\>=\>5$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now