Self Studies

Logarithm and Antilogarithm Test 3

Result Self Studies

Logarithm and Antilogarithm Test 3
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The value of $$(\sqrt 8)^{\tfrac 13}$$ is
    Solution
    $$(\sqrt 8)^{\tfrac 13} = (8^{\tfrac 12})^{\tfrac 13}$$ $$ = 8^{ ( \tfrac {1}{2} \times \tfrac {1}{3} )} = 8^{\tfrac {1}{6}}$$

    $$\Rightarrow (2^3)^{\tfrac 16} = 2^{(3\times \tfrac {1}{6})} = 2^{\tfrac {1}{2}} = \sqrt 2$$
  • Question 2
    1 / -0
    Simplify $$(32)^{\displaystyle \frac {-2}{5}}\, \div\, (125)^{\displaystyle \frac {-2}{3}}$$
    Solution
    $$ \cfrac {(32)^{ \tfrac {-2}{5}}}{(125)^{ \tfrac {-2}{3}}} =  \cfrac { \cfrac {1}{4}}{ \cfrac {1}{25}} =  \cfrac {25}{4}$$
  • Question 3
    1 / -0
    If x = 2, y = 3 then $$\displaystyle \frac {1}{x^y}\, +\, \displaystyle \frac {1}{y^x}$$ = .........
    Solution
    $$\displaystyle \frac {1}{2^3}\, +\, \displaystyle \frac {1}{3^2}\, =\, \displaystyle \frac {1}{8}\, +\, \displaystyle \frac {1}{9}\, =\, \displaystyle \frac {9+8}{72}\, =\, \displaystyle \frac {17}{72}$$
  • Question 4
    1 / -0
    $$\left ( \displaystyle \frac {16}{81} \right )^{\displaystyle \frac {3}{4}}$$ = ..........
    Solution
    $$\left ( \cfrac {16}{81} \right )^{ \tfrac {3}{4}} = \left [ \left ( \cfrac {2}{3} \right )^4 \right ]^{\tfrac {3}{4}} = \cfrac {8}{27}$$
  • Question 5
    1 / -0
    The value of $$(3^{0} - 4^{0})\, \times\, 5^2$$ is
    Solution
    To find the value of $$(3^{0} - 4^{0})\, \times\, 5^2$$

    $$(3^{0} - 4^{0}) \times 5^2$$
    $$ = (1 - 1) \times 25 $$
    $$= 0\times25$$
    $$= 0$$

    Hence, the value is $$0$$
  • Question 6
    1 / -0
    The value of $$[ (-2)^{(-2)} ]^{(-3)}$$ is

    Solution
    $$[ (-2)^{(-2)} ]^{(-3)}\, =\, (-2)^6\, =\, 64$$
  • Question 7
    1 / -0
    $$(64)^{\displaystyle \frac {-2}{3}}\, \times \left ( \displaystyle \frac {1}{4} \right )^{-3}$$ equals to
    Solution
    $$(64)^{ -\tfrac {2}{3}} \times \left (  \cfrac {1}{4} \right )^{-3} = (4^3)^{ -\tfrac {2}{3}} \times \left (  \cfrac {1}{4} \right )^{-3}$$

    $$\Rightarrow 4^{-2} \times  \cfrac {1}{4^{-3}} $$

    $$\Rightarrow 4^{-2+3} = 4^1 = 4$$
  • Question 8
    1 / -0
    The value of $$\left ( \displaystyle \frac {-1}{216} \right )^{-2/3}$$ is
    Solution
    $$\left (\cfrac {-1}{216} \right )^{-\tfrac 23} = \left [ \left (\cfrac {-1}{6} \right )^3 \right ]^{-\tfrac23} $$
    $$=\left ( \cfrac {-1}{6} \right )^{3 \times  -\tfrac {2}{3}}$$
    $$=\left (- \cfrac {1}{6} \right )^{-2} $$
    $$= \cfrac {1}{(-1/6)^2} $$
    $$= \cfrac {1}{(1/36)} = 36$$
  • Question 9
    1 / -0
    The value of $$(256)^{\dfrac 54}$$ is
    Solution
    $$(256)^{\dfrac 54} = (4^4)^{\dfrac 54}$$

                   $$ = 4^{(4\times \dfrac {5}{4})}$$

                   $$= 4^5 = 1024$$
  • Question 10
    1 / -0
    Which of the following values are equal?
    I. $$1^4$$
    II. $$4^0$$ 
    III. $$0^4$$
    IV. $$4^1$$
    Solution
    I $$1^4 = 1$$
    II: $$4^0 = 1$$
    III: $$0^4 = 0$$
    IV: $$4^1 = 4$$

    Hence, $$1^4=4^0 = 1$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now