Self Studies

Basics of Financial Mathematics Test 22

Result Self Studies

Basics of Financial Mathematics Test 22
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Aman gave Rs.95009500  as a loan to Megh at the rate of 4%4\% p.a. compounded yearly. Megh returned the amount after two years. Calculate the interest on the first year's interest.
    Solution
    P=9500,R=4,T=2P=9500,R=4,T=2 years

    Interest in 11 year=P×R×1100=\cfrac { P\times R\times 1 }{ 100 } =9500×4100=\cfrac { 9500\times 4 }{ 100 } =380=380

    Interest on interest=380×4×1100=\cfrac { 380\times 4\times 1 }{ 100 } =15.2=15.2
  • Question 2
    1 / -0
    The bank offers senior citizens intrest at the rate 9%9\% p.a compounded yearly on a fixed deposit. What interest will be received at the end of 55 years if Rs.10,00010,000 are deposited. Calculate by the method of simple interest.
    Solution
    P=10000,R=9,T=5P=10000,R=9,T=5 yrs
    Interest in 11st year=P×R×T100=\cfrac { P\times R\times T }{ 100 }
    =10000×9×1100=\cfrac { 10000\times 9\times 1 }{ 100 }
    =900=900
    P=(900+10000)P'=(900+10000)
    Interest in 22nd year=10900×9×1100=981=\cfrac { 10900\times 9\times 1 }{ 100 } =981
    Interest in 33rd year=11881×9×1100=\cfrac { 11881\times 9\times 1 }{ 100 }
    =1069.29=1069.29
    Interest in 44th year=12950.29×9×1100=\cfrac { 12950.29\times 9\times 1 }{ 100 }
    =1165.5261=1165.5261
    Interest in 55th year=14115.81×9×1100=\cfrac { 14115.81\times 9\times 1 }{ 100 }
    =1270.42=1270.42
    Total interest=900+981+1069.29+1165.52+1270.42=900+981+1069.29+1165.52+1270.42
    =5386.23=5386.23

  • Question 3
    1 / -0
    A bank pays interest at the rate of 8%8\% per annum compounded yearly. Find the interest by simple interest method if Rs. 8000Rs.\ 8000 was deposited for 33 years.
    Solution
    P=Rs. 8000,R=8P=Rs.\ 8000,R=8%, Time period=3=3 years

    Interest in 11st year =P×R×T100=\cfrac { P\times R\times T }{ 100 }
                                    =8000×8×1100=\cfrac { 8000\times 8\times 1 }{ 100 }
                                    =Rs. 640=Rs.\ 640

    Principal amount for 22nd year will be,
    P=P+640P'=P+640
          =Rs. 8000+Rs. 640=Rs.\ 8000+Rs.\ 640
          =Rs. 8640=Rs.\ 8640

    Interest in 22nd year=8640×8100=\cfrac { 8640\times 8 }{ 100 }
                                     =Rs. 691.2=Rs.\ 691.2

    Principal amount for 22nd year will be,
    P=P+691.2P''=P'+691.2
          =Rs. 8640+Rs. 691.2=Rs.\ 8640+Rs.\ 691.2
          =Rs. 9331.2=Rs.\ 9331.2

    Interest in 33rd year =9331.2×8100=\cfrac { 9331.2\times 8 }{ 100 }
                                     =Rs. 746.5=Rs.\ 746.5

    So, total interest =640+691.2+746.5=640+691.2+746.5
                                =Rs. 2077.69=Rs.\ 2077.69
                                Rs. 2077.7\approx Rs.\ 2077.7
  • Question 4
    1 / -0
    A businessman borrowed the Rs.4545 lakh  for two years at the rate 2.5%2.5\% p.a. compounded annually. Calculate the compound interest by simple interest method.
    Solution
    \Rightarrow  Here, Principal amount for first year  is Rs.45,00,000Rs.45,00,000 and R=2.5%R=2.5\%.
    \Rightarrow  Interest for first year = 4500000×2.5100=Rs.1,12,500\dfrac{4500000\times 2.5}{100}=Rs.1,12,500

    \Rightarrow  Principal amount for second year = Rs.4500000+Rs.112500=Rs.46,12,500Rs.4500000+Rs.112500=Rs.46,12,500

    \Rightarrow  Second year interest = 4612500×2.5100=Rs.1,15,312.5\dfrac{4612500\times 2.5}{100}=Rs.1,15,312.5

    \Rightarrow  Total interest for 2 yeras = Rs.1,12,500+Rs.1,15,312.5=Rs.2,27,812.5Rs.1,12,500+Rs.1,15,312.5=Rs.2,27,812.5
  • Question 5
    1 / -0
    The population of a town 33 years ago was Rs. 50,00050,000.If the population in these three years has increased at the rate of 10%,15%10\%,15\% and 8%8\% respectively, find the present population.
    Solution
    Let P=.50,000P=.50,000 and 
    R1=10%,R2=15%,R3=8%R_1=10\%,\\ R_2=15\%,\\ R_3=8\%.
    Present population = P×(1+R1100)(1+R2100)(1+R3100)P\times \left (1+\dfrac{R_1}{100}\right)\left (1+\dfrac{R_2}{100}\right)\left (1+\dfrac{R_3}{100}\right)
    On substituiting the given values,
    Present population == 50000×(1+10100)×(1+15100)×(1+8100)50000\times \left (1+\dfrac{10}{100}\right)\times \left (1+\dfrac{15}{100}\right)\times \left (1+\dfrac{8}{100}\right)
                                     == 50000×1110×2320×2725=6831050000\times \dfrac{11}{10}\times \dfrac {23}{20}\times \dfrac{27}{25} =68310
    Therefore, present population == 6831068310.
  • Question 6
    1 / -0
    A man lends Rs. 12,50012,500 at 1212% for the first year, at 1515% for the second year and at 1818% for the third year. If the rates of interest are compounded yearly; find the difference between the C.I. for the first year and the compound interest for the third year.
  • Question 7
    1 / -0
    In what time will Rs. 4000 amount to Rs. 5324 at 10% per annum compound interest?
    Solution
    Given that, P=Rs. 4000,A=Rs. 5324P=Rs.\ 4000,\,A=Rs.\ 5324 and R=10%R=10\%
    Let the time be TT years
    We know that, for compound interest,
    A=P×(1+R100)TA=P\times \left(1+\dfrac{R}{100}\right)^T

     5324=4000×(1+10100)T\therefore \ 5324=4000\times \left(1+\dfrac{10}{100}\right)^T

    \Rightarrow   53244000=(1+110)T\dfrac{5324}{4000}=\left(1+\dfrac{1}{10}\right)^T

    \Rightarrow   13311000=(1110)T\dfrac{1331}{1000}=\left(\dfrac{11}{10}\right)^T

    \Rightarrow    (1110)3=(1110)T\left(\dfrac{11}{10}\right)^3=\left(\dfrac{11}{10}\right)^T

    \therefore    T=3yearsT=3\,years.

    Hence, Rs. 4000Rs.\ 4000 will amount to Rs. 5324Rs.\ 5324 at 10%10\% per annum in 33 years.
  • Question 8
    1 / -0
    What amount will  sum up to Rs. 6,6556,655 at 1010% p.a. in CI in 33 years?
    Solution
    \Rightarrow  We have, A=Rs.6,655,R=10%A=Rs.6,655,\,R=10\% and T=3yearsT=3\,years
    \Rightarrow  A=P×(1+R100)TA=P\times (1+\dfrac{R}{100})^T

    \Rightarrow  6655=P×(1+10100)36655=P\times (1+\dfrac{10}{100})^3

    \Rightarrow  6655=P×(1110)36655=P\times (\dfrac{11}{10})^3

    \Rightarrow   P=6655×10001331=Rs.5000P=\dfrac{6655\times 1000}{1331}=Rs.5000
  • Question 9
    1 / -0
    What sum of money will amount to Rs. 31,94431,944 in three years at 1010% per annum compounded yearly?
    Solution
    \Rightarrow  Here, we have A=Rs.31,944,T=3yearsA=Rs.31,944,\,T=3\,years and R=10%R=10\%.
    \Rightarrow  A=P×(1+R100)TA=P\times (1+\dfrac{R}{100})^T

    \Rightarrow  31,944=P×(1+10100)331,944=P\times (1+\dfrac{10}{100})^3

    \Rightarrow  31,944=P×(1110)331,944=P\times (\dfrac{11}{10})^3

    \Rightarrow  31,944=P×1331100031,944=P\times \dfrac{1331}{1000}

    \Rightarrow  P=31,944×10001331P=\dfrac{31,944\times 1000}{1331}

    \therefore    P=Rs.24,000P=Rs.24,000.
  • Question 10
    1 / -0
    A sum of Rs. 15,000Rs.\ 15,000 is invested for 33 years at 10%10 \% per annum compound interest. Calculate the interest for the second year.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now