Self Studies

Straight Lines Test 15

Result Self Studies

Straight Lines Test 15
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The fourth vertex DD of a parallelogram ABCDABCD whose three vertices are A(2,3),B(6,7)A (2, 3), B (6, 7) and C(8,3)C (8, 3) is
    Solution
    Let A(2,3),B(6,7)A(2,3), B(6,7) and C(8,3)C(8,3) be the vertices of parallelogra

    And let D(x,y)D(x,y) be the fourth vertex.

    Midpoint of ACAC =(2+82,3+32)=(5,3)=\left (\dfrac {2+8}{2},\dfrac {3+3}{2}\right)=(5,3)

    Also, midpoint of BDBD =(x+62,y+72)=\left (\dfrac {x+6}{2}, \dfrac {y+7}{2}\right)

    Since the diagonals of parallelogram bisect eachother at OO

    Therefore, midpoint of ACAC == midpoint of BDBD

    (x+62,y+72)=(5,3)\Rightarrow \left (\dfrac {x+6}{2},\dfrac {y+7}{2}\right)=(5,3)
     x+62=5,y+72=3\Rightarrow \dfrac  {x+6}{2}=5, \dfrac {y+7}{2}=3

    x+6=10,y+7=6\Rightarrow x+6=10, y+7=6

    x=4,y=1\Rightarrow x=4, y=-1

    Therefore, the coordinates of the fourth vertex will be (x,y)=(4,1)(x,y)=(4,-1).
  • Question 2
    1 / -0
    The value of E=(1+17)(1+172)(1+173)......(1+1719)(1+19)(1+192)(1+193).....(1+1917) \displaystyle E = \frac { (1+17)(1+\frac { 17 }{ 2 } )(1+\frac { 17 }{ 3 } )......(1+\frac { 17 }{ 19 } ) }{ (1+19)(1+\frac { 19 }{ 2 } )(1+\frac { 19 }{ 3 } ).....(1+\frac { 19 }{ 17 } ) }  is,
    Solution
    E=(1+17)(1+172)(1+173)......(1+1719)(1+19)(1+192)(1+193).....(1+1917) \displaystyle E = \frac { (1+17)(1+\frac { 17 }{ 2 } )(1+\frac { 17 }{3 } )......(1+\frac { 17 }{ 19 } ) }{ (1+19)(1+\frac { 19 }{ 2 } )(1+\frac { 19 }{ 3 } ).....(1+\frac { 19 }{ 17 } ) } 

    =181920.............361234...............19202122.............361234...............17\quad =\displaystyle \frac{\displaystyle \frac{18\cdot 19\cdot 20.............36}{1\cdot 2\cdot 3\cdot 4...............19}}{\displaystyle \frac{20\cdot 21\cdot 22.............36}{1\cdot 2\cdot 3\cdot 4...............17}}


       =181920.............361234...............19×1234...............17202122.............36 \ \ \ =\displaystyle \frac{18\cdot 19\cdot 20.............36}{1\cdot 2\cdot 3\cdot 4...............19}\times \frac{1\cdot 2\cdot 3\cdot 4...............17}{20\cdot 21\cdot 22.............36}


    =181920.............36202122.............36×1234...............171234...............19\quad = \displaystyle \frac{18\cdot 19\cdot 20.............36}{20\cdot 21\cdot 22.............36}\times \frac{1\cdot 2\cdot 3\cdot 4...............17}{1\cdot 2\cdot 3\cdot 4...............19}


    $$\displaystyle  \ \ \  =\frac{18\cdot 19}{1}\times \frac{1}{18\cdot 19}=1$$
  • Question 3
    1 / -0
    The sum of the value of the digits at the tens place of all the numbers formed with the help of 3,4,5,63, 4, 5, 6 taken all at a time is
    Solution
    Total number of numbers formed with the digits 3,4,5,63,4,5,6 is 4!4! == 2424
    If a digit is fixed in tens place, number of numbers formed will be 66
    i.e for every digit in tens place there will be 66 numbers formed
    Now, sum of the digits =(6×3)+(6×4)+(6×5)+(6×6) = (6\times3)+(6\times4)+(6\times5)+(6\times6)  =108 = 108 .
    Now its value in tens place =108×10=1080= 108\times10=1080 .
  • Question 4
    1 / -0
    Three Men have 44 coats 55 waist Coats, and 66 caps. The number of ways they can wear them is
    Solution
    Coats  4P3\rightarrow  ^4P_3
    4 3 2
    Waist Coats  5P3\rightarrow   ^5P_3
    5 4 3
    Caps   6P3\rightarrow   ^6P_3
    6 5 4
    Total no. of ways of wearing them= 4P3 ^4P_3 x 5P3 ^5P_3 x  6P3 ^6P_3
  • Question 5
    1 / -0
    Plot (3,0),(5,0)(3, 0), (5, 0) and (0,4)(0, 4) on cartesian plane. Name the figure formed by joining these points and find its area.
    Solution
    The figure is a triangle.
    We know that the area of the triangle whose vertices are (x1,y1),(x2,y2),\displaystyle (x_{1},y_{1}),(x_{2},y_{2}), and (x3,y3)(x_{3},y_{3}) is 12x1(y2y3)+x2(y3y1)+x3(y1y2)\cfrac{1}{2}\left | x_{1}(y_{2}-y_{3})+x_{2}(y_{3}-y_{1}) +x_{3}(y_{1}-y_{2})\right |
    Therefore, 
    Area =12[3(04)+5(40)+0]=4= \dfrac{1}{2} [3(0-4)+5(4-0)+0] = 4 square units.

  • Question 6
    1 / -0
    The area of a triangle with vertices A(3,0),B(7,0)A (3, 0), B (7, 0) and C(8,4)C (8, 4) is
    Solution
    The area of the  ΔABC \Delta ABC with vertices 
    A(x1,y1)=(3,0),B(x2,y2)=(7,0) & C(x3,y3)=(8,4) A\left( { x }_{ 1 },{ y }_{ 1 } \right)=(3,0), B\left( { x }_{ 2 },{ y }_{ 2 } \right)=(7,0)\ \&\ C\left( { x }_{ 3 },{ y }_{ 3 } \right)=(8,4) is 
    Ar.ΔABC=12[x1(y2y3)+x2(y3y1)+x3(y1y2) ] Ar.\Delta ABC=\dfrac { 1 }{ 2 } \left[ { x }_{ 1 }\left( { y }_{ 2 }-{ y }_{ 3 } \right) +{ x }_{ 2 }\left( { y }_{ 3 }-{ y }_{ 1 } \right) +{ x }_{ 3 }\left( { y }_{ 1 }-{ y }_{ 2 } \right)  \right]
    =12{3(04)+7(40)+8(00) }=\dfrac { 1 }{ 2 } \left\{ 3\left( 0-4 \right) +7\left( 4-0 \right) +8\left( 0-0 \right)  \right\} sq.units =8=8 sq. units.
    Hence, option C.
  • Question 7
    1 / -0
    A point (a,b)(a, b) is called a good point if both aa and bb are integers. Number of good points on the curve xyxy == 225225 are
    Solution
    The order pair (x,y)(x, y) satisfying xy=225xy=225 are (1,225),(3,75)(5,45),(9,25),(15,15)(1, 225), (3, 75) (5, 45), (9, 25), (15, 15). Order can be changed in the first four pairs and both xx and yy can be negative also, so the no. of pairs =2(2×4+1)=18=2(2\times 4+1)=18
  • Question 8
    1 / -0
     In a class there are 1010 boys and 88 girls. The teacher wants to select either a boy or a girl to represent the class in a function. The number of ways the teacher can make this selection.
    Solution
    There are 1010 boys and 88 girls in a class. 
    The teacher wants to select just one to represent the class. 
    One boy out of 1010 can be selected in 1010 ways. 
    Similarly, one girl out of 88 can be selected in 88 ways. 
    So, if he has to select either a boy OR a girl, he can do it in total 10+810+8 number of ways. i.e 1818
  • Question 9
    1 / -0
    The area of a triangle with vertices (a,b+c),(b,c+a)(a, b + c), (b, c + a) and (c,a+b)(c, a + b) is
    Solution
    The area of ABC\triangle ABC with vertices A(x1,y1)A\equiv(x_1, y_1)B(x2,y2)B\equiv(x_2, y_2) and C(x3,y3)C\equiv(x_3, y_3) is given as,
    A(ABC)=12[x1(y3y2)+x2(y1y3)+x3(y2y1)]A(\triangle ABC) = \left|\dfrac12[x_1(y_3-y_2) +x_2(y_1 - y_3) + x_3(y_2-y_1) ]\right|
    In this problem,
    A(ABC)=12[a(a+b(c+a))+b(b+c(a+b))+c(c+a(b+c))]A(\triangle ABC) = \left|\dfrac12[a(a+b-(c+a)) +b(b+c - (a+b)) + c(c+a-(b+c)) ]\right|
    A(ABC)=12[abac+bcba+cacb]\therefore A(\triangle ABC) = \left|\dfrac12[ab-ac + bc-ba + ca-cb]\right|
    A(ABC)=0\therefore A(\triangle ABC) = 0
    Hence, the correct Option is D.
  • Question 10
    1 / -0
    The area of triangle ABC (in sq. units) is :

    Solution
    The area of a triangle is given as:
    Area =12[x1(y2y3)+x2(y3y1)+x3(y1y2)]=\dfrac { 1 }{ 2 } \left[ { x }_{ 1 }({ y }_{ 2 }-{ y }_{ 3 })+{ x }_{ 2 }({ y }_{ 3 }-{ y }_{ 1 })+{ x }_{ 3 }({ y }_{ 1 }-{ y }_{ 2 }) \right]
    the given points are A(1,3), B(1,0) A(1,3),~B(-1,0) and C(4,0)C(4,0)
    by Substituting ,
    Area=12[1(00)+(1)(03)+4(30)]=12[3+12]=152=7.5\text{Area} =\dfrac { 1 }{ 2 } \left[ 1(0-0)+(-1)(0-3)+4(3-0) \right] \\ =\dfrac { 1 }{ 2 } \left[ 3+12 \right] =\dfrac { 15 }{ 2 } =7.5 
    \therefore Area of the given triangle ABC is 7.57.5 sq. units
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now