Self Studies

Straight Lines Test 25

Result Self Studies

Straight Lines Test 25
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The value of (n+2)!(n+1)!n!\dfrac {(n + 2)! - (n + 1)!}{n!} is:
    Solution
    The value of (n+2)!(n+1)!n!\dfrac { (n+2)!-(n+1)! }{ n! }
    =(n+2)(n+1)n!(n+1)n!n!=\dfrac { (n+2)(n+1)n!-(n+1)n! }{ n! }
    =(n+1)(n!)(n+21)n!=\dfrac { (n+1)(n!)(n+2-1) }{ n! }
    =(n+1)(n+1)1=\dfrac { (n+1)(n+1) }{ 1 }
    =(n+1)2={ (n+1) }^{ 2 }
  • Question 2
    1 / -0
    Find the area of a triangle whose vertices are (0,63),(35,7)(0, 6\sqrt {3}), (\sqrt {35}, 7), and (0,3)(0, 3).
    Solution
    Area of triangle having vertices (x1,y1),(x2,y2)(x_1,y_1), (x_2,y_2) and (x3,y3)(x_3,y_3) is given by
    Area =12×[x1(y2y3)+x2(y3y1)+x3(y1y2)] = \dfrac{1}{2} \times [ x_1 (y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) ]
    Area of triangle whose vertices are (0,63),(35,7),(0,3)(0,6\sqrt{3}),(\sqrt{35},7) ,(0,3)
    =12[0(73)+35(363)+0(637))]=\dfrac{1}{2}\left [ 0(7-3)+\sqrt{35}(3-6\sqrt{3})+0(6\sqrt{3}-7)) \right ]
    =12[35(363)]=\dfrac{1}{2}\left [ \sqrt{35}(3-6\sqrt{3}) \right ]
    =12[5.91(36×1.73)]=\dfrac{1}{2}\left [ 5.91(3-6\times 1.73) \right ]
    =12×5.91×7.40=\dfrac{1}{2}\times 5.91\times 7.40
    =12×43.74=\dfrac{1}{2}\times 43.74
    =21.87=21.87
  • Question 3
    1 / -0
    The area of the triangle with coordinates (1,2),(5,5)(1, 2), (5, 5) and (k,2)(k, 2) is 1515 square units. Calculate a possible value for kk.
    Solution
    Area of triangle having vertices (x1,y1),(x2,y2)(x_1,y_1), (x_2,y_2) and (x3,y3)(x_3,y_3) is given by
     =12×[x1(y2y3)+x2(y3y1)+x3(y1y2)] = \dfrac{1}{2} \times [ x_1 (y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) ]
    Therefore,
    Area of triangle is 15=12×1(52)+5(22)+k(25)15 = \dfrac {1}{2} \times |1(5-2) + 5(2-2) + k(2-5)|
    12×3+03k=12×33k=15 \Rightarrow \dfrac {1}{2} \times |3+0-3k| = \dfrac {1}{2} \times |3-3k| = 15 
    33k=30\Rightarrow |3-3k|=30  =>  1k=10|1-k| = 10
    1k=10\Rightarrow 1-k = 10 and 1k=101-k=-10 
     k=9\Rightarrow  k=-9 and k=11k=11
  • Question 4
    1 / -0
    For all numbers a and b, let ab\displaystyle a\bigodot b be defined by ab=ab+a+b\displaystyle a\bigodot b=ab+a+b. Then for the numbers xx, yy and zz, which of the following is/are true?
    I. xy=yx\displaystyle x\bigodot y=y\bigodot x
    II. (x1)(x+1)=(xx)1\displaystyle \left( x-1 \right) \bigodot \left( x+1 \right) =\left( x\bigodot x \right) -1
    III. x(y+z)=(xy)+(xz) \displaystyle x\bigodot \left( y+z \right) =\left( x\bigodot y \right) +\left( x\bigodot z \right) 
    Solution
    For(I)For(I)
    xy=yxx\odot y=y\odot x
    xy=xy+x+yxy=yxx\odot y=xy+x+y\Rightarrow x\odot y=y\odot x
    yx=yx+y+xy\odot x=yx+y+x

    For(II)For(II)
    (x1)(x+1)\left( x-1 \right) \odot \left( x+1 \right) 
    =(x1)(x+1)+x1+x+1=(x-1)(x+1)+x-1+x+1
    =x21+2x={ x }^{ 2 }-1+2x
    (xx)1=x×x+x+x1\left( x\odot x \right) -1=x\times x+x+x-1
    x2+2x1{ x }^{ 2 }+2x-1
    (x1)(x+1)=(xx)1\therefore \left( x-1 \right) \odot \left( x+1 \right) =\left( x\odot x \right) -1

    For(III)For(III)
    x(y+z)x\odot \left( y+z \right)
    =x(y+z)+x+y+z=x\left( y+z \right) +x+y+z
    =xy+xz+x+y+z=xy+xz+x+y+z
    xy=xy+x+yx\odot y=xy+x+y
    xz=xz+x+zx\odot z=xz+x+z
    xy+xz=xy+xz+x+y+x+zx\odot y+x\odot z=xy+xz+x+y+x+z
    =xy+xz+2x+y+z=xy+xz+2x+y+z
    x(y+z)xy+xz\Rightarrow x\odot \left( y+z \right) \neq x\odot y+x\odot z

    (I)&(II)\therefore (I)\& (II) are true.
  • Question 5
    1 / -0
    In fig., the area of triangle ABC (in sq. units) is:

    Solution
    Given: Coordinates of Point A(1,3),B(1,0)A (1,3) ,B (-1,0) and C(4,0)C (4,0)
    Construction: Drop a perpendicular from AA on xx- axis, which meets x-axis at D(1,0)D\equiv(1,0)
    Now in ΔADC,AD=3,DC=3\Delta ADC, AD = 3, DC = 3
    Area of ΔADC=12×DC×AD\Delta ADC = \dfrac12\times DC\times AD
    =12×3×3=92 cm2= \dfrac12\times3\times3 = \dfrac92 \ cm^2

    Now in ΔADB,AD=3,DB=2\Delta ADB, AD = 3, DB = 2
    Area of ΔADB=12×DB×AD\Delta ADB = \dfrac12\times DB\times AD
    =12×2×3=3 cm2= \dfrac12\times2\times3 = 3 \ cm^2

    Area of ΔABC=\Delta ABC = Ara of ΔADC+\Delta ADC + Area of ΔABD\Delta ABD
    =92+3=152=7.5 cm2 = \dfrac92 + 3 = \dfrac{15}2 = 7.5\ cm^2

  • Question 6
    1 / -0
    m,2m,4m,...m, 2m, 4m, . . .
    The first term in the sequence above is mm, and each term thereafter is equal to twice the previous term. If mm is an integer, which of the following could NOT be the sum of the first four terms of this sequence?
    Solution
    The first term in given Geometric series, a1=ma_1=m
    The common ratio rr =4m2m=2=\dfrac{4m}{2m}=2
    No. of terms, nn =4=4
    Applying sum of GP formula,
    Sn=a(1rn)1rS_n=\dfrac{a(1-r^n)}{1-r}
          =m(124)12=\dfrac{m(1-2^4)}{1-2}
          =m(116)1=15m=\dfrac{m(1-16)}{-1}=15m   
    If mm is an integer the sum of the first four terms of this sequence should be in multiple of 1515.
    Hence, option A is correct which is not a multiple of 1515.
  • Question 7
    1 / -0
    The area of a triangle is 5 and its two vertices are A(2, 1) and B(3, -2). The third vertex lies on y=x+3\displaystyle y=x+3. What is the third vertex?
    Solution

  • Question 8
    1 / -0
    In the xyxy-plane, the vertices of a triangle are (1,3),(6,3)(-1,3), (6,3) and (1,4)(-1,-4). The area of the triangle is ___ square units.
    Solution
    If (x1,y1)(x_1,y_1),(x2,y2)(x_2,y_2) and (x3,y3)(x_3,y_3) are the vertices of a triangle then its area is given by,
    A=12(x1(y2y3)+x2(y3y1)+x3(y1y2))A=\left| \dfrac { 1 }{ 2 } (x_{ 1 }(y_{ 2 }-y_{ 3 })+x_{ 2 }(y_{ 3 }-y_{ 1 })+x_{ 3 }(y_{ 1 }-y_{ 2 })) \right|
    Therefore, with the vertices (1,3)(-1,3)(6,3)(6,3) and (1,4)(-1,-4)
    Area of triangle is given by,
    A=12(1(3(4))+6(43)+(1)(33))A=\left| \dfrac { 1 }{ 2 } (-1(3-(-4))+6(-4-3)+(-1)(3-3)) \right|
    =12(742) =\left| \dfrac { 1 }{ 2 } (-7-42) \right|
    =12(49)=\left| \dfrac { 1 }{ 2 } (-49) \right|
    =24.5=\left| -24.5 \right|
    =24.5 =24.5 square units.
  • Question 9
    1 / -0
    N=a2+b2N=a^2 + b^2 is a three-digit number which is divisible by 5. a = 10x + y and b = 10x + z, where z is a prime number, and x and y are natural numbers. If a + b = 31, find the value of N.
    Solution

  • Question 10
    1 / -0
    If mn=m+(m1)+(m2)+......+(mn)m * n = m+(m-1)+(m-2)+ ...... +(m-n), evaluate 757 * 5.
    Solution
    \Rightarrow  mn=m+(m1)+(m2)+....+(mn)m * n=m+(m-1)+(m-2)+....+(m-n)
    \Rightarrow  In 757 * 5, m=7m=7 and n=5n=5
    \Rightarrow  75=7+(71)+(72)+(73)+(74)+(75)7 * 5=7+(7-1)+(7-2)+(7-3)+(7-4)+(7-5)
    \Rightarrow  75=7+6+5+4+3+27 * 5=7+6+5+4+3+2
    \therefore   75=277 * 5=27
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now