Self Studies

Permutations and Combinations Test 15

Result Self Studies

Permutations and Combinations Test 15
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The mid points of three sides of a triangle are (0, 1) (0, 2) and (0, 3). Area of this triangle. 
    Solution

  • Question 2
    1 / -0
    How many six letter words be made out of the letters of ASSISTASSIST ? In how many words the alphabets SS alternates with other letters ?
    Solution
    The word ASSIST has 3 's' and 3 other characters (AIT).
    Place the other 3 characters first. This can be done in 3! ways.
    Now there are 4 spaces remaining (1234) mark as 1,2,3,4.
    3 's' 5 can be placed at the spaces marked as 1,2,3 or at the spaces marked as 2,3,4 (2)was 
    Total no.of ways =3! .2=3×2×2=12=3\times 2\times 2=12
    Total no.of ways =5!.=5×4×3×2=120.=5\times 4\times 3\times 2=120.
    \therefore so, the answer is 120,12.

  • Question 3
    1 / -0
    In how many ways can 5 persons A,B,C,D and E sit around a circular table.
    Solution
    Given,

    55 people

    A,B,C,D,EA,B,C,D,E

    ways of sitting around a table

    A,B,D,E,CA,B,D,E,C

    B,A,D,E,CB,A,D,E,C

    A,B,C,E,DA,B,C,E,D

    B,A,C,E,DB,A,C,E,D

    5P4=5!(54)!=120\therefore ^5P_4=\dfrac{5!}{(5-4)!}=120ways
  • Question 4
    1 / -0
    If P (n, n) denotes the number of permutations of n different things taken all at a time then P (n, n ) is also identical to:
    Solution

  • Question 5
    1 / -0
    Observe the given pattern
    4×0+1=014\times 0+1=01
    4×1+2=064\times1+2=06 
    4×2+3=114\times 2+3=11
    4×3+4=164\times 3+4=16
    Then the value of 4×8+94\times8+9 is -----
    Solution
    If we carefully observe the pattern
    in first  row it shows four multiply with zero addition one equals one
    same for other pattern too
    so answer of 4×8+9=414\times 8+9 = 41
  • Question 6
    1 / -0
    When we realize a specific implementation of a pancake algorithm, every move when we find the greatest of the sized array and flipping can be modeled through ____________.
    Solution
    Unlike a traditional sorting algorithm, which attempts to sort with the fewest comparisons possible, the goal is to sort the sequence in as few reversals as possible.
    Here when we flipping the array or stack, we have to take utmost priority to preserve the order of the list so that that sorting doesnt become invalid. Hence we use permutations, we are ensuring that order matters.
  • Question 7
    1 / -0
    The value of E=(1+17)(1+172)(1+173)......(1+1719)(1+19)(1+192)(1+193).....(1+1917) \displaystyle E = \frac { (1+17)(1+\frac { 17 }{ 2 } )(1+\frac { 17 }{ 3 } )......(1+\frac { 17 }{ 19 } ) }{ (1+19)(1+\frac { 19 }{ 2 } )(1+\frac { 19 }{ 3 } ).....(1+\frac { 19 }{ 17 } ) }  is,
    Solution
    E=(1+17)(1+172)(1+173)......(1+1719)(1+19)(1+192)(1+193).....(1+1917) \displaystyle E = \frac { (1+17)(1+\frac { 17 }{ 2 } )(1+\frac { 17 }{3 } )......(1+\frac { 17 }{ 19 } ) }{ (1+19)(1+\frac { 19 }{ 2 } )(1+\frac { 19 }{ 3 } ).....(1+\frac { 19 }{ 17 } ) } 

    =181920.............361234...............19202122.............361234...............17\quad =\displaystyle \frac{\displaystyle \frac{18\cdot 19\cdot 20.............36}{1\cdot 2\cdot 3\cdot 4...............19}}{\displaystyle \frac{20\cdot 21\cdot 22.............36}{1\cdot 2\cdot 3\cdot 4...............17}}


       =181920.............361234...............19×1234...............17202122.............36 \ \ \ =\displaystyle \frac{18\cdot 19\cdot 20.............36}{1\cdot 2\cdot 3\cdot 4...............19}\times \frac{1\cdot 2\cdot 3\cdot 4...............17}{20\cdot 21\cdot 22.............36}


    =181920.............36202122.............36×1234...............171234...............19\quad = \displaystyle \frac{18\cdot 19\cdot 20.............36}{20\cdot 21\cdot 22.............36}\times \frac{1\cdot 2\cdot 3\cdot 4...............17}{1\cdot 2\cdot 3\cdot 4...............19}


    $$\displaystyle  \ \ \  =\frac{18\cdot 19}{1}\times \frac{1}{18\cdot 19}=1$$
  • Question 8
    1 / -0
    2020 persons are invited for a party, then the number of ways in which they and the host be seated at a round table is
    Solution
    Total no. of persons  including host are (20+1)(20+1)
    As they have to sit in round table, the required permutation is (n1)!(n-1)!
    =(20+11)!=(20+1-1)!
    =20!=20!
  • Question 9
    1 / -0
    Plot (3,0),(5,0)(3, 0), (5, 0) and (0,4)(0, 4) on cartesian plane. Name the figure formed by joining these points and find its area.
    Solution
    The figure is a triangle.
    We know that the area of the triangle whose vertices are (x1,y1),(x2,y2),\displaystyle (x_{1},y_{1}),(x_{2},y_{2}), and (x3,y3)(x_{3},y_{3}) is 12x1(y2y3)+x2(y3y1)+x3(y1y2)\cfrac{1}{2}\left | x_{1}(y_{2}-y_{3})+x_{2}(y_{3}-y_{1}) +x_{3}(y_{1}-y_{2})\right |
    Therefore, 
    Area =12[3(04)+5(40)+0]=4= \dfrac{1}{2} [3(0-4)+5(4-0)+0] = 4 square units.

  • Question 10
    1 / -0
    The area of a triangle with vertices A(3,0),B(7,0)A (3, 0), B (7, 0) and C(8,4)C (8, 4) is
    Solution
    The area of the  ΔABC \Delta ABC with vertices 
    A(x1,y1)=(3,0),B(x2,y2)=(7,0) & C(x3,y3)=(8,4) A\left( { x }_{ 1 },{ y }_{ 1 } \right)=(3,0), B\left( { x }_{ 2 },{ y }_{ 2 } \right)=(7,0)\ \&\ C\left( { x }_{ 3 },{ y }_{ 3 } \right)=(8,4) is 
    Ar.ΔABC=12[x1(y2y3)+x2(y3y1)+x3(y1y2) ] Ar.\Delta ABC=\dfrac { 1 }{ 2 } \left[ { x }_{ 1 }\left( { y }_{ 2 }-{ y }_{ 3 } \right) +{ x }_{ 2 }\left( { y }_{ 3 }-{ y }_{ 1 } \right) +{ x }_{ 3 }\left( { y }_{ 1 }-{ y }_{ 2 } \right)  \right]
    =12{3(04)+7(40)+8(00) }=\dfrac { 1 }{ 2 } \left\{ 3\left( 0-4 \right) +7\left( 4-0 \right) +8\left( 0-0 \right)  \right\} sq.units =8=8 sq. units.
    Hence, option C.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now