The equation of relative lowering vapour pressure is given as-
$$\cfrac{{p}^{0} - p}{{p}^{0}} = {X}_{2}$$
Whereas,
$${p}^{0} =$$ Vapour prssure of solvent
$$p =$$ Vapour pressure of solution
$${X}_{2} =$$ Mole fraction of solute
Given that density of $$C{Cl}_{4}$$ is $$1.58 \; {g}/{{cm}^{3}}$$
As we know that,
$$\text{density} = \cfrac{\text{mass}}{\text{volume}}$$
$$\Rightarrow 1.58 = \cfrac{\text{mass}}{100}$$
$$\Rightarrow \text{mass of } C{Cl}_{4} = 158 \; g$$
Molecular weight of $$C{Cl}_{4} = 154 \; g$$
$$\therefore$$ No. of moles of $$C{Cl}_{4} = \cfrac{158}{154} = 1.026 \text{ mol}$$
Given weight of solute $$= 0.05 \; g$$
Molecular weight of solute $$= 65 \; g$$
$$\therefore$$ No. of moles of solute $$= \cfrac{0.05}{65} = 0.00077 \text{ mol}$$
$$\therefore$$ Total no. of moles $$= 1.026 + 0.00077 = 1.02677 \text{ mol}$$
$$\therefore$$ Mole fraction of solute $$= \cfrac{0.00077}{1.02677} = 0.00075$$
Vapour pressure of solvent $$= 143 \text{ mm of Hg}$$
Noe from equation of relative lowering vapour pressure, we have
$$\cfrac{143 - p}{143} = 0.00075$$
$$\Rightarrow 143 - p = 0.107$$
$$\Rightarrow p = 142.893 \text{ mm of Hg}$$
Hence the vapour pressure of solution is $$142.893 \text{ mm of Hg}$$.