Self Studies

States of Matter Test - 55

Result Self Studies

States of Matter Test - 55
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The density of a liquid is 1.2 g/mL. That are 35 drops in 2 mL. The number of molecules in 1 drop is (molecular weight of liquid = 70): 
    Solution
    Volume of one drop $$=\frac{2}{35}\, mL$$

    Moles in one drop $$=\frac{2 \times 1.2}{35 \times 70}=\frac{1.2}{(35)^2}\ mol$$

    Number of molecules in one drop $$=\frac{1.2}{(35)^2}\times N_A$$
  • Question 2
    1 / -0
    The reaction, $$ZnO(s)+CO(g) \rightleftharpoons  Zn(g)+{CO}_{2}(g)$$, has an equilibrium constant of $$1$$ atm at $$1500K$$. The equilibrium partial pressure of zinc vapour in a reaction vessel if an equimolar mixture of $$CO$$ and $${CO}_{2}$$ is brought into contact with solid $$ZnO$$ at $$1500K$$ and the equilibrium is achieved at $$1$$ atm is?
    Solution

  • Question 3
    1 / -0
    When a liquid that is immiscible with water was steam distilled at $$95.2^o$$C at a total pressure of $$99.652$$ kPa, the distillate contained $$1.27$$ g of the liquid per gram of water. What will be the molar mass of the liquid if the vapour pressure of water is $$85.140$$ kPa at $$95.2^o$$C?
    Solution
    Total pressure, $$P_{total}=99.652$$ kPa

    $$P_{water}=p_B= 85.140$$ kPa

    $$P_{liquid}=p_A=(99.652-85.140)$$ kPa

    $$=14.512$$ kPa

    and $$\displaystyle\dfrac{m_A}{m_B}=\dfrac{1.27}{1}$$

    or $$\displaystyle\dfrac{m_A}{m_B}=\dfrac{p_AM_A}{p_BM_B}$$

    or, $$M_A=\left(\dfrac{m_A}{m_B}\right)\left(\dfrac{p_BM_B}{p_A}\right)$$

    $$M_A=1.27\times \left(\displaystyle \frac{85.140kPa\times 18\ g \ mol^{-1}}{14.512\ kPa}\right)$$

    $$M_A\simeq 134.1 \ g \  mol^{-1}$$
  • Question 4
    1 / -0
    If one mole monoatomic ideal gas was taken through process $$AB$$ as shown in figure, then select correct option(s).

    Solution
    Given, $$n = 1\space mole$$                 $$PV = nRT$$
    $$w_{AB } = P(\Delta V) = P(5) = 5P\space J$$
    $$P = - \dfrac{8.314(600)}{15} = 8.314\times 40$$
    $$\Rightarrow w_{AB } = - 8.314\times 40 \times 5 \space J$$
    Hence, $$w_{AB } =-  1496.52\space J$$
  • Question 5
    1 / -0
    An ideal gas undergoes isothermal expansion from ($$10$$ atm, $$1$$L) to ($$1$$ atm, $$10$$L) either by path-I(infinite stage expansion) or by path-II(first against $$5$$atm and then against $$1$$ atm). The value of $$\left(\displaystyle\frac{q_{path-1}}{q_{path-II}}\right)$$ is?
    Solution
    For path-I 

    $$W=-nRT\ln\dfrac { { V }_{ 2 } }{ { V }_{ 1 } } $$$$=-nRT\ln\left( \dfrac { 10 }{ 1 }  \right)$$

    $$ =-nRT\times 2.303$$

    $${ q }_{ 1 }=-W=nRT\times 2.303$$

    For Path-II 

    $$W=-5atm\left( \dfrac { nRT }{ { P }_{ 2 } } -\dfrac { nRT }{ { P }_{ 1 } }  \right) -1atm\left( \dfrac { nRT }{ { P }_{ 2 }^{ 1 } } -\dfrac { nRT }{ { P }_{ 1 }^{ 1 } } \right)$$ 

    $$ =-nRT \left( \dfrac { 5 }{ { P }_{ 2 } } -\dfrac { 5 }{ { P }_{ 1 } }  \right) + \left( \dfrac { 1 }{ { P }_{ 2 }^{ 1 } } -\dfrac { 1 }{ { P }_{ 1 }^{ 1 }}\right)$$

     $$ =-1.3RT.n$$

    $$\therefore \quad { q }_{ II }=1.3nRT$$
    $$\therefore \quad \dfrac { { q }_{ I } }{ { q }_{ II } } =\dfrac { 2.303 }{ 1.3 }$$

    Hence, the correct option is $$\text{A}$$
  • Question 6
    1 / -0
    In which of the following case(s) pressure of gas is more than atmospheric pressure.
    Solution

  • Question 7
    1 / -0
    $$18$$ g glucose ($$C_6H_{12}O_6$$) is added to $$178.2$$ g of water. The vapour pressure of this aqueous solution at $$100^0C$$ in torr is:
    Solution

    Molecular mass of water $$=\left( 2\times 1 \right) +\left( 1\times 16 \right) =18g$$

    For $$178.2$$g water, $${ n }_{ A }=\dfrac{178.2}{18}=9.9\ mol$$

    Molecular mass of glucose $$=(6)(12)+(12)(1)+6(16)=180$$g.

    For $$18$$g glucose, $${ n }_{ B }=\dfrac{18}{180}=0.1\ mol$$

    $${ X }_{ B }=\dfrac{0.1}{\left( 0.1+9.9 \right) }=0.01$$

    $${ X }_{ A }=1-0.01=0.99$$

    For lowering of vapour pressure,

    $$P={ P }_{ A }^{ 0 }{ X }^{ A }={ P }_{ A }^{ 0 }\left( 1-{ X }_{ B } \right) $$

    $$P=760\left( 1-0.01 \right) $$

    $$P=760-7.6$$

    $$P=752.40$$ torr

    Vapour pressure of water is $$752.40$$ torr.

    Therefore, the correct option is $$C$$.
  • Question 8
    1 / -0
    Two liquids $$X$$ and $$Y$$ from an ideal solution. At $$300K$$, a vapour pressure of the solution containing $$1$$ mol of $$X$$ and $$3$$ mol of $$Y$$ is $$550$$ $$mm \ Hg$$. At the same temperature, if $$1$$ mol of $$Y$$ is further added to this solution, a vapour pressure of the solution increased by $$10$$ $$mm \ Hg$$. Vapour pressure ( in mmHg) of $$X$$ and $$Y$$ in their pure states will be respectively: 
    Solution
    $$\begin{array}{l} { P_{ Total } }={ X_{ x } }{ P_{ x } }+{ X_{ y } }{ P_{ y } }\, \, So,\, \, 550=\frac { 1 }{ 4 } { P_{ x } }+\frac { 3 }{ 4 } { P_{ y } } & \left[ \begin{array}{l} Here\, \, { p_{ y } }\, \, and\, \, { p_{ y } }\, \, and\, \, vapour\, \, pressure \\ of\, \, X\, and\, \, Y\, \, in\, \, pure\, \, states. \end{array} \right]  \\ { P_{ x } }+3{ P_{ 4 } }=550\times 4;{ P_{ x } }+3{ P_{ y } }=2200\to \left( i \right)  &  \\ { 2^{ nd } }\, \, case &  \\ { P_{ total } }=560\, \, mm\, \, Hg. &  \\ \frac { 1 }{ 5 } { P_{ x } }+\frac { 4 }{ 5 } { P_{ y } }=560\, \, { P_{ x } }+{ 48_{ y } }=2800\to \left( { ii } \right)  &  \\ \left( { ii } \right) -\left( i \right)  &  \\ { p_{ y } }=600\, \, mm\, \, Hg\, \, { p_{ x } }=2200-1800\Rightarrow 400\, \, mm\, \, 07ng &  \end{array}$$
  • Question 9
    1 / -0
    At certain temperature ($$T$$) for the gas phase reaction
    $$2{ H }_{ 2 }O(g)+2{ Cl }_{ 2 }(g)\rightleftharpoons 4HCl(g)+{ O }_{ 2 }(g);{ K }_{ P }=12\times { 10 }^{ 8 }atm$$
    If $${Cl}_{2}$$, $$HCl$$ and $${O}_{2}$$ are mixed in such a manner that the partial pressure of each is $$2atm$$ and the mixture is brough into contact with excess of liquid water. What would be approximate partial pressure of $${Cl}_{2}$$ when equilibrium is attained at temperature ($$T$$)?
    [Given:Vapour pressure of water is $$380mm$$ $$Hg$$ at temperature ($$T$$)]
    Solution
    $$2H_2O + 2Cl_2 \rightleftharpoons 4HCl + O_2$$
    $$K_P = \dfrac{[HCl]^4[O_2]}{[H_2O]^2[Cl_2]^2}$$
    Given, partial pressure is $$2\space atm$$ for $$Cl_2, HCl, O_2.$$
    $$\Rightarrow 12\times 10^8 = \dfrac{(2)^4(2)}{(2)^2[Cl]^2}$$
    Hence, $$P_{Cl_2}$$ is $$3.6\times 10^{-5}\space atm$$
  • Question 10
    1 / -0
    $$CuSO_4$$$$\cdot$$$$5H_2O(s)$$$$\rightleftharpoons$$ $$CuSO_4\cdot$$ 3$$H_2O(s)$$ + $$2H_2O(g)$$; $$K_p$$ = 4$$\times10^{-4}$$ $$atm^2$$ if the vapour pressure of water is 38 torr then percentage of relative humidity is: ( Assume all data at constant temperature)
    Solution
    $${K_p} = P_{{H_2}O}^2 = 4 \times {10^{ - 4}}$$
    $${P_{{H_2}O}} = 2 \times {10^{ - 2}}\,\,atm \Rightarrow 0.02\,\,atm$$
    $$P_{{H_2}O}^1 = 38\,\,atm \Rightarrow \frac{{38}}{{760}}\,\,atm \Rightarrow \frac{1}{{20}}\,\,atm \Rightarrow 0.05\,\,atm$$
    $$\% \,\,{\text{Relative}}\,\,humidity = \frac{{{P_{{H_2}O}}}}{{P_{{H_2}O}^1}} \Rightarrow \frac{{0.02}}{{0.05}} = \frac{2}{5} \times 100 \Rightarrow 40\,\,\% $$
    Option C is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now