Self Studies

States of Matter Test - 62

Result Self Studies

States of Matter Test - 62
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    For the two compounds, the vapour pressure of (2) at a particular temperature is expected to be:-

    Solution
    (2) has intramolecular Hydrogen bonding. Due to this, there is less association between  the molecules and hence, higher vapour pressure.
    (1) has intermolecular hydrogen bonding , leading to more association between the molecules. Due to this, (1) has low vapour pressure than (2).
  • Question 2
    1 / -0
    $$100\space g$$ of liquid $$A$$(molar mass $$140\space g { mol }^{ -1 })$$ was dissolved in $$1000\space g$$ of liquid $$B$$ (molar mass $$180 \space g { mol }^{ -1 })$$. The vapour pressure of pure liquid $$B$$ was found to be $$500 \space torr.$$ Calculate the vapour of pure liquid $$A$$ and its vapour pressure in the solution if the total vapour pressure of the solution is $$475 \space torr$$.
    Solution
    Given:- 
    $$P_{T}=475$$ Torr, $$P_{B}^{\circ}=500$$ Torr
    $$\omega_{A}=100\space  g, M_{A}=140\space g  ;  \omega_{B}=1000\space g, M_{B}=180 g$$

    To find:- $$P_{A}^{0}$$ and $$P_{A}$$

    $$n_{A}=\dfrac{10 0 }{140}=\dfrac{5}{7}, n_{B}=\dfrac{1000}{180}=\dfrac{50}{9}$$

    Now, $$x_{A}=\dfrac{n_{A}}{h_{A}+{h_{B}}}=\dfrac{\dfrac{5}{7}}{\dfrac{5}{7}+\dfrac{50}{9}}=0.114$$

    $$x_{B}=1-u_{A}=1-0.114=0.886$$

    we know, that,

    $$\quad P_{T}=P_{A}^{0} x_{A}+P_{B}^{0} x_{B}$$

    where $$p_{A} x_{A}=P_{A}$$ and $$p_{B} x_{B}=P_{B}$$

    Now, $$\quad P^{0} A \times 0.114+500 \times 0.886=475$$

    $$\Rightarrow p^{0} A=280 \cdot 70$$ Torr 

    $$\therefore \quad P_{A}=p_{A} x_{A}=280.7 \times 0.114$$

    So, $$P_A=31.9998$$ Torr
    or

    $$P_{A} \approx 32$$ Torr 
    option $$B$$ is correct
  • Question 3
    1 / -0
    In a gaseous mixture at $${20}^{o}C$$ the partial pressure of the components are
    $${H}_{2}:150$$ Torr  $${CH}_{4}:300$$ Torr
    $${CO}_{2}:200$$ Torr  $${C}_{2}{H}_{4}:100$$ Torr
    Volume percent of $${H}_{2}$$ is:
    Solution
    In a mixture of gases the percent of each gas in the volume is same as the percent of each partial pressure in the total pressure.
    Total partial pressure=$$150+300+200+100=750\\ $$torr
    $$volume\quad percent H2=\frac { 150 }{ 750 } \times 100\\ =20$$
  • Question 4
    1 / -0
    A $$1.0\ g$$ sample of air consists of approximately $$0.76\ g$$ of nitrogen and $$0.24\ g$$ of oxygen. This sample occupies a $$1.0\ L$$ vessel at $$20^{o}C$$. Then:
    Solution
    conclusion: hence the option (C) is correct.
    The data needed for use are
    $${ P }_{ { N }_{ 2 }= }?\quad \quad \quad \quad { n }_{ N_{ 2 } }=?\quad \quad \quad V=1.00L\quad \quad \quad T=293K\quad ({ 20 }^{ 0 }C)$$

    $${ P }_{ O_{ 2 } }=?\quad \quad \quad { n }_{ { O }_{ 2 } }=?\quad \quad \quad V=1.00L\quad \quad \quad \quad T=293K\quad ({ 20 }^{ 0 }C)$$

    The number of $${ n }_{ N_{ 2 } }$$ and $${ n }_{ { O }_{ 2 } }$$ can be obtained from the masses and molar masses (28.02g/mol for $${ N }_{ 2 }$$ 32.00g/mol of $${ O }_{ 2 }$$0

    Moles of $${ N }_{ 2 }$$= 0.76G $${ N }_{ 2 }$$x =$$\dfrac { 1\quad mol\quad { N }_{ 2 } }{ 28.02g\quad { N }_{ 2 } } =0.0271\quad mol\quad { N }_{ 2 }$$

    Moles of $${ O }_{ 2 }$$=0.24g$${ O }_{ 2 }$$x=$$\dfrac { 1\quad mol\quad { O }_{ 2 } }{ 32.00{ gO }_{ 2 } } =0.00750mol\quad { O }_{ 2 }$$
    using $${ P }_{ A }=\dfrac { { n }_{ A }RT }{ V } $$
    $${ P }_{ { N }_{ 2 }= }0.0271mol{ N }_{ 2 }\times \dfrac { 0.08206Latm }{ 1Kmol } \times \dfrac { 293 }{ 1.00L } =0.65\quad atm{ N }_{ 2 }$$

    $${ P }_{ O_{ 2 } }=0.00750mol{ O }_{ 2 }\times \dfrac { 0.08206Latm }{ 1Kmol } \times \dfrac { 293 }{ 1.00L } =0.18\quad atm{ O }_{ 2 }$$

    The total pressure is the sum of these partial pressure

    $$P=0.65 atm+0.18atm=0.83atm$$
  • Question 5
    1 / -0
    The K.E of $$N$$ molecule of $$O_{2}$$ is $$xjoules$$ at__ $${123}^{o}C$$. Another sample of $$O_{2}$$ at $${327}^{o}C$$ has a K.E of $$2x$$ joules. The latter sample contains:
    Solution

    Though the individual speeds are changing, the distribution of speeds remains constant at a particular temperature.

    $$K.E_{ O_{ 2 } }=\dfrac { \dfrac { 3 }{ 2 } \times \dfrac { N }{ 32 } \times R\times 150 }{ \dfrac { 3 }{ 2 } \times \dfrac { { N }' }{ 32 } \times R\times 300 } $$

                 $$=\dfrac { x }{ 2x } $$

         $$K.E_{ O_{ 2 } }=\dfrac { N\times 1 }{ N'\times 2 } $$
              
                  $$N=N'$$

    conclusion: hence the option (A) is correct.
  • Question 6
    1 / -0
    $$0.5\ \text{mole}$$ of each $$H_{2},SO_{2}$$ and $$CH_{4}$$ are kept in a container. A hole was made in the container. After 3 hours, decreasing order of partial pressures of gases in the container will be:
    Solution
    Answer : D.  $$P_{SO_{2}} > P_{CH_{4}} > P_{H_{2}}$$

    The partial pressure of a gas is directly proportional to mole fraction, therefore directly proportional to the number of moles.

    Initially, there are equal number of moles (0.5 moles) of each gases. So their partial pressures are equal. 

    After 3 hours, some amount of each gases will be effused out through the hole. Gas with larger effusion rate will be effused more through the hole and will have less number of moles remaining in the container, resulting in lower partial pressure compared to others.

    We know that,
    Molar mass of $$H_{2}$$, $$M_{H_{2}}$$ = $$1\times2$$ = $$2$$ g

    Molar mass of $$SO_{2}$$, $$M_{SO_{2}}$$ = $$32 + (16\times2)$$ = $$64 $$ g

    Molar mass of $$CH_{4}$$, $$M_{CH_{4}}$$ = $$12 + (1\times4)$$ = $$16$$ g

    Therefore, the order of molar masses,
     $$M_{SO_{2}} > M_{CH_{4}} > M_{H_{2}}$$

    $$\textrm{Rate of effusion of gas}$$ $$\alpha$$ $$\dfrac{1}{\sqrt{\textrm{molar mass}}}$$
    $$\Rightarrow$$ Order of rates of effusion,
    $$r_{SO_{2}} < r_{CH_{4}} < r_{H_{2}}$$

    $$\textrm{Number of moles remaining in the container}$$  $$\alpha$$  $$\dfrac{1}{\textrm{Rate of effusion}}$$
    $$\Rightarrow$$ Order of number of moles remaining in the container,
    $$n_{SO_{2}} > n_{CH_{4}} > n_{H_{2}}$$

    $$\textrm{Partial pressure}$$  $$\alpha$$  $$\textrm{Number of moles remaining in the container}$$
    $$\Rightarrow$$ Order of partial pressures,
    $$P_{SO_{2}} > P_{CH_{4}} > P_{H_{2}}$$
  • Question 7
    1 / -0
    $$N_{2}$$ is found in a litre flask under $$100\ kPa$$ pressure and $$O_{2}$$ is found in another $$3$$ litre flask under $$320\ kPa$$ pressure. If the two flask are connected, the resultant pressure is:
    Solution
    At initial condition $${ P }_{ 1 }=100kPa$$ $$=1atm{ V }_{ 1 }$$
                                                           $$=1L{ P }_{ 2 }$$
                                                            $$=320k{ Pa=3atm{ V }_{ 2 } }$$=$$3L$$
    Applying ideal gas law,$$\dfrac { PV }{ RT } =n$$
    total mole at initial conditions,
    $$(1+{ n }_{ 2 })$$=$${ n }_{ i }=\dfrac { 2 }{ RT } +\dfrac{ 9.3 }{ RT } =\dfrac { 11.3 }{ RT } $$
    After mixing the gases the number of moles remains constant gases do not undergo reaction.
    $${ n }_{ i }={ n }_{ f }={ P }_{ f }\times \dfrac { { V }_{ f } }{ RT } \\ Where,{ P }_{ f }=final\quad pressure\\ \quad \quad \quad \quad \quad { V }_{ f }=final\quad volume\\ { V }_{ f }={ V }_{ 1 }+{ V }_{ 2 }=4L\\ thus,{ P }_{ f }\times \dfrac { 4 }{ RT } =\dfrac { 11.3 }{ RT } \\ { P }_{ f }=2.85atm$$
    $${ P }_{ f }=285kPa\approx 265kPa$$
  • Question 8
    1 / -0
    The density of a gas $$A$$ is twice that of $$B$$. Molar mass of $$A$$ is half that of $$B$$. The ratio of partial pressure of $$A$$ to $$B$$ is:
    Solution
    According to Ideal gas equation
    $$PV=nRT$$

    $$n=\dfrac{m}{M}$$

    $$PV=\dfrac { m }{ M } RT\\ P=\dfrac { m }{ V } \times \dfrac { RT }{ M } \\ P=d \times \ \dfrac { RT }{ M } $$

    As $$R$$ and $$T$$ are constant

    $$ P_{ A }=\dfrac { { d }_{ A } }{ { M }_{ A } } \\ P_{ B }=\dfrac { { d }_{ B } }{ { M }_{ B } } $$

    Given $${ M }_{ A }=\dfrac { 1 }{ 2 } { M }_{ B }\\ d_{ A }=2d_{ B }$$

    $$\dfrac { { P }_{ A } }{ { P }_{ B } } =\dfrac { { d }_{ A }{ M }_{ B } }{ { M }_{ A }{ d }_{ B } } $$

    Putting the value of $${ d }_{ A }$$ and $${ M }_{ A }$$ in the above equation
    $$\dfrac { { P }_{ A } }{ { P }_{ B } } =4$$
  • Question 9
    1 / -0
    A container is divided into two compartment. One compartment contains $$2$$ mole of $$N_{2}$$ gas at $$1$$ atm and $$300\ K$$ & other compartment contains $$H_{2}$$ gas at the same temperature and pressure. Volume of $$H_{2}$$ compartment is four times the volume of $$N_{2}$$ compartment. [assume no reaction under these condition]
    If the container containing $$N_{2}$$ and $$H_{2}$$ are further heated to $$1000\ K$$ forming $$NH_{3}$$ with $$100\%$$ yield. Calculate the final total pressure.
    Solution
    Compartment containing $$N_2$$
    $$n=2$$
    $$P=1$$atm
    $$T=300$$K
    Finding for V
    Using Ideal gas equation
    $$PV=nRT$$
    $$V=\dfrac{2\times0.0821\times300}{1}=49.26$$L
    Compartment containing $$H_2$$
    Givn volume is 4 times than $$N_2$$
    $$V_2 =4\times49.26=197$$L
    Finding moles for $$H_2$$ Compartment
    given pressure and temperature is equal to $$N_2$$ compartment
    $$n=\dfrac{197}{0.0821\times300}=8$$
    Calculating final pressure
    $$T=1000$$K
    $$P=\dfrac{8\times0.0821\times1000}{197}=3.33$$atm
  • Question 10
    1 / -0
    A glass tube of volume $$112ml$$. containing a gas is partially evacuated till the pressure in it drops to $$3.8 \times 10^{-5}\ torr$$ at $$0^{o}C$$. The number of molecules of the gas remaining in the tube is?
    Solution
    Pressure $$=3.8\times 10^{-5} torr$$ and temperature $$=0^oc+273k$$ 

    $$R=62.36367\ L\ Torr |c^{-1} mo|^{-1}$$

    Volume $$=112\ ml =112 \times 10^{-3}c$$

    number of mole $$n=\dfrac{PV}{RT}$$

    $$=\dfrac{3.8\times 10^{-5}\times 112\times10^{-3}}{62.36367\times 273}$$

    $$=2.5\times10^{-10}$$

    number of molecules of gas $$=6.022\times 10^{23} \times 2.5\times 10^{-10}$$

    $$=1.5\times10^{14}$$

    So, the correct option is $$B$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now