Self Studies

States of Matter Test - 63

Result Self Studies

States of Matter Test - 63
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    An LPG cylinder can withstand pressure difference of 15 atm across its boundaries. If at room temp $$({ 27 }^{ o })$$ it is filled with 2 atm pressure. Determine the temperature at which it will explode?

    Solution
    Given,
    Pressure difference across LPG cylinder boundaries= 15 atm
    We know atmospheric pressure = 1 atm
    It is given that pressure difference across wall =15 atm
    therefore,Pressure inside cylinder's wall=15+1=16 atm
    $${P}_{1}=16atm$$
    $${P}_{2}=2atm$$
    $${T}_{2}=300K$$
    Now according to gay lusaac's law at constant $$V$$
    $$P\propto T$$
    $$\dfrac { { P }_{ 1 } }{ { P }_{ 2 } } =\dfrac { { T }_{ 1 } }{ { T }_{ 2 } } $$
    $${T}_{1}=16 \times 300/2$$
    $${T}_{1}=2400K$$
  • Question 2
    1 / -0
    Vapour pressure of a saturated solution of a sparingly soluble salt $$A_2B_3$$ is 31.8 mm of Hg at $$40^{\circ}C$$. If vapour pressure of pure water is 31.8 mm of Hg at $$40^{\circ}C$$ the solubility product of $$A_2B_3$$ at $$40^{\circ}C$$ is:
    Solution

  • Question 3
    1 / -0
    Vapour pressure of pure benzene is 119 torr and of toluene is 37.0 torr at the same temperature mole fraction of toluene in vapour phase which is in equilibrium with a solution of benzene and toluene having a mole fraction of toluene 0.50, will be:
  • Question 4
    1 / -0

    $$18.0\ g$$ of glucose$$\left( {{C_6}{H_{12}}{O_6}} \right)$$ is added to $$178.2\ g$$ of water. The vapour pressure of water for this aqueous solution at $${100^o}\ C$$ is :

    Solution
    Molecular mass of water $$=2\times 1+1\times 16=18$$g
    For $$178.2g$$ water $$n_A$$=9.9
    Molecular mass of glucose $$=6\times 12+12\times 1+6\times 16=180$$g
    For 18g glucose $$n_B$$=0.1
    $$X_B=\dfrac{0.10}{(0.1+9.9)}=0.01$$
    $$X_A=0.99$$
    For lowering of vapour pressure ,
    $$p=p^0_AX^A=P^0_A(1−X_B)$$
    $$P=760(1−0.01)$$
    $$=760−7.6$$
    $$=752.4torr$$
  • Question 5
    1 / -0
    100 g of liquid $$A$$ (molar mass 140 g $$mol^{-1}$$) was dissolved in 1000 g of liquid $$B$$ (molar mass 180 g $$mol^{-1}$$) The vapour pressure of pure liquid $$B$$ was found to be 500 torr. 

    Calculate the vapour pressure of pure liquid $$A$$ and its vapour pressure in the solution if the total vapour pressure of the solution is 475 torr:
    Solution
    Given: $$P_T= 475, W_A= 100g, M_A=140, {P^o_B}=500$$
    $$W_B=1000g, M_B= 180, P^o_A ?, P_A=?$$
    $$P_T=P^o_AX_A+P^o_BX_B\longrightarrow (1)$$ & $$X_A+X_B=1 \longrightarrow (2)$$
    $$\Rightarrow \cfrac {X_B}{X_A}=\cfrac {W_BM_A}{W_AM_B}=\cfrac {1000\times 140}{100\times 180}=7.78$$
    $$\therefore X_B= 7.78 X_A$$
    Substituting $$X_B$$ in $$(2)$$
    $$X_A+7.78X_A=1$$
    $$\therefore X_A=0.113$$ & hence $$X_B=1-0.113=0.886$$
    Substituting $$X_A$$ & $$X_B$$ in equation $$(1)$$
    $$\Rightarrow 475= P^o_A(0.113)+500(0.886)$$
    $$\Rightarrow 0.113P^o_A=32 \Rightarrow P^o_A=\cfrac {32}{0.113}=283.18 torr$$
    Now, $$P_A=P^o_A(1-X_B)=P^o_AX_A$$
                    $$= 283.18 \times 0.113$$
                    $$= 31.999 torr$$ 
  • Question 6
    1 / -0
    The vapour pressure of a pure liquid $$A$$ is $$70$$ torr at $$27^oC$$. It forms an ideal solution with another liquid $$B$$. The mole fraction of $$B$$ is $$0.2$$ and total vapour pressure of the solution is $$84$$ torr at $$27^oC$$. The vapour pressure of pure liquid $$B$$ at $$27^o$$C is:
    Solution
    We know Raoult's law,

    For an ideal solution,

    Partial pressure in solution $$=$$ mole fraction $$\times$$ Vapour pressure in pure state

    Given,

    $${ P }_{ A }^{ 0 }=70$$ torr at $${ 27 }^{ 0 }C$$    $${ X }_{ B }=0.2$$

    then $${ X }_{ A }=1-{ X }_{ B }=1-0.2=0.8$$    $${ P }_{ B }^{ 0 }=?$$

    $${ P }_{ total }$$ or $${ P }_{ solution }$$ $$=84$$ torr

    By, Raoult's law

    $$\boxed { { P }_{ solution }={ X }_{ A }{ P }_{ A }^{ 0 }+{ X }_{ B }{ P }_{ B }^{ 0 } } $$

    $$84=0.8\times 70+0.2{ P }_{ B }^{ 0 }$$

    $${ P }_{ B }^{ 0 }=\dfrac { 84-56 }{ 0.2 } $$

    $${ P }_{ B }^{ 0 }=140$$ torr

    $$\therefore$$   Vapour pressure of pure liquid $$B$$ at $${ 25 }^{ 0 }C$$ is $$140$$ torr.

    Hence, the correct option is $$\text{C}$$
  • Question 7
    1 / -0
    Which of the following change is observed occurs when a substance X is converted from liquid to vapour phase at the standard boiling point?
    I.Potential energy of the system decreases
    II. The distance between molecules increases
    III. The average kinetic energy of the molecules in both phases are equal.
    Solution

  • Question 8
    1 / -0
    $${ \Delta  }_{ f }{ G }^{ }$$ at 500 K for substance $$S$$ in liquid state and gaseous state are +100.7 kcal $${ }^{ -1 }$$ and +103 kcal $${ }^{ -1 }$$, respectively. Vapour pressure of liquid $$S$$ at 500 K is approximately equal to:
    ($$R=2\ cal $$ $${ K }^{ -1 }{ }^{ -1 }$$)
    Solution
    Solution:- (B) $$10 \; atm$$
    As we know that, at equilibrium,
    $${\Delta{G}}^{°} = -2.303 \; RT \; \log{{K}_{p}} ..... \left( 1 \right)$$
    $${S}_{\left( l \right)} \rightleftharpoons {S}_{\left( g \right)}$$
    From the above reaction,
    $${\Delta{G}}^{°} = {{\Delta{G}}_{f}}_{\left( \text{product} \right)} - {{\Delta{G}}^{°}}_{\left( \text{reactant} \right)}$$
    $$\Rightarrow {\Delta{G}}^{°} = 103 - 100.7 = 2.3 \; {kcal}/{mol} = 2.3 \times {10}^{3} \; {kcal}/{mol}$$
    Given:-
    $$T = 500 \; K$$
    $$R = 2 {cal}/{mol-K}$$
    From $${eq}^{n} \left( 1 \right)$$, we have
    $$2.3 \times {10}^{3} = -2.303 \times 2 \times 500 \times \log{{K}_{p}}$$
    $$\Rightarrow \log{{K}_{p}} = -1$$
    $$\Rightarrow {K}_{p} = {10}^{-1} \; atm$$
    Now, from the above reaction,
    $${K}_{p} = \cfrac{1}{{P}_{{S}_{\left( l \right)}}}$$
    $$\Rightarrow {P}_{{S}_{\left( l \right)}} = \cfrac{1}{{10}^{-1}} = 10 \; atm$$
    Hence the vapou pressure of liquid $$S$$ is approximately equal to $$10 \; atm$$.
  • Question 9
    1 / -0
    The vapour pressure of pure $$A$$ is 10 torr and at the same temperature when 1 g of $$B$$ is dissolved in 20 gm of $$A$$, its vapour pressure is reduced to 9.0 torn If the molecular mass of $$A$$ is 200 amu, then the molecular mass of $$B$$ is:
    Solution
    Given data 

    Wt of $$A=20$$ gm  
    $${ P }_{ A }^{ 0 }=10$$ torr               
    molecular mass of $$A=200$$ amu
    Wt of $$B=1$$ gm    
    $${ P }_{ solution }=9$$ torr         
    molecular mass of $$B=?$$

    This problem can be solved by using the relative lowering of vapour pressure.

    $$\dfrac { { P }^{ 0 }-P }{ { P }^{ 0 } } =\dfrac { { n }_{ 2 } }{ { n }_{ 1 }+{ n }_{ 2 } } $$

    $${ P }^{ 0 }=$$ Vapour pressure of pure solvent
    $$P=$$ Vapour pressure of solution
    $${ n }_{ 2 }=$$ moles of solute
    $${ n }_{ 1 }=$$ moles of solvent

    $$\dfrac { 10-9 }{ 10 } =\dfrac { \dfrac { 1 }{ x }  }{ \dfrac { 20 }{ 200 } +\dfrac { 1 }{ x }  } $$

    $$\left[ \dfrac { 1 }{ 10 } +\dfrac { 1 }{ x }  \right] \dfrac { 1 }{ 10 } =\dfrac { 1 }{ x } $$

    $$\dfrac { 1 }{ 100 } +\dfrac { 1 }{ 10x } =\dfrac { 1 }{ x } $$

    $$\dfrac { 1 }{ 100 } =\dfrac { 1 }{ x } -\dfrac { 1 }{ 10x } =\dfrac { 9 }{ 10x } $$   

         $$\therefore$$   The molecular mass of compound (solute) B is $$90$$ amu

    $$10x=900$$

    $$\boxed { x=90amu } $$


    Hence, the correct option is $$B$$
  • Question 10
    1 / -0
    Pressure of $$COCl_2(g)$$ in the gaseous mixture in final state ?
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now