Self Studies

Thermodynamics Test - 63

Result Self Studies

Thermodynamics Test - 63
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The value of $$\triangle G$$ for the process $$H_{2}O(s) \rightarrow H_{2}O(l)$$ at $$1\ atm$$ and $$260\ K$$ is:-
    Solution

  • Question 2
    1 / -0
    The reaction $$NH_{2}CN(s) + \dfrac {3}{2}O_{2}(g) \rightarrow N_{2}(g) + CO_{2}(g) + H_{2}O(l)$$ was carried out at $$300\ k$$ in a bomb calorimeter. The heat released was $$742\ kJ\ mol^{-1}$$. The value of $$\triangle H_{300K}$$ for this reaction would be_________.
    Solution
    Enthalpy change for a reaction $$(\Delta H)$$ is given by the expression,
    $$\Delta H=\Delta U+\Delta  n_gRT$$
    where,
    $$\Delta U=$$change in internal energy
    $$\Delta n_g=$$change in number of moles

    For the given reaction,

    $$\Delta n_g=\sum{n_g(product}-\sum{n_g(reactant)}$$
             
             $$=(2-1.5)moles$$

    $$\Delta n_g=0.5 moles$$,

    $$\Delta U=-742.7\ kJ/mol$$

    $$T=298\ k$$

    $$ R=8.314\times10^{-3} kJ/mol $$

    Substituting the values in the expression of $$\Delta H$$

    $$\Delta H=(-742.7)+(0.5)(298)(8.314\times10^{-3})$$
             $$=-742.7+1.2$$
             $$=-741.5\ kJ/mol$$
  • Question 3
    1 / -0
    Following reaction occurs at $${25}^{o}C$$:
    $$2NO(g, 1\times { 10 }^{ -5 }atm)+{ Cl }_{ 2 }(g, 1\times { 10 }^{ -2 }atm)\rightleftharpoons 2NOCl\ \left( g, 1\times { 10 }^{ -2 }atm \right) $$
    $$\Delta { G }^{ o }$$ is_______________.
    Solution
    $$\underset { 1 \times 10^{-5} atm}{2NO}+\underset {1 \times 10^{-2}atm}{Cl_2} \rightleftharpoons \underset { 1 \times 10^{-2} atm}{2NOCl}$$
    $$K_p= \cfrac {(P\quad NOCl)^2}{(P\quad NO)^2(P\quad Cl_2)}$$
           $$=\cfrac {(1 \times 10^{-2})^2}{(1 \times 10^{-5})^2\times 1 \times 10^{-2}}$$
           $$=\cfrac { 1 \times 10^{-2}}{1 \times 10^{-10}}=1 \times 10^8$$
    $$\Delta u= -RTln K_p= -8.314 \times 298 \times ln 10^8$$
           $$= -8.314 \times 298 \times 8 \times ln10$$
           $$= -8.314 \times 298 \times 8 \times 2.3$$
           $$= -45.587 J/Kg$$
           $$=-45.6 kJ$$ .
  • Question 4
    1 / -0
    $$100ml$$ of $${O}_{2}$$ gas diffuses in $$10$$ seconds. $$100ml$$ of gas $$x$$ diffuses in $$t$$ seconds. Gas $$x$$ and time $$t$$ can be respectively:
    Solution
    If the volume of both the gases are same then,
    $$\cfrac{t_2}{t_1}=\sqrt{\cfrac{M_2}{M_1}}$$
    GIven :
    $$t_1=10s$$
    $$M_1=32g$$
    $$t_2=t$$
    $$M_2=M$$
    Now, $$\cfrac{t}{10}=\sqrt{\cfrac{M}{32}}$$

    Since two unknowns are present we can substitute the values from the given options and then find the right answer. 
    For $$M=2\ t=2.5sec$$
    $$\cfrac{2.5}{10}=\sqrt{\cfrac{2}{32}}$$
    $$\cfrac{1}{4}=\sqrt{\cfrac{1}{16}}$$
    $$\cfrac{1}{4}=\cfrac{1}{4}$$
    LHS=RHS

    Hence, Gas x is $$H_2$$ and time t is $$2.5seconds$$
  • Question 5
    1 / -0
    When two moles of Hydrogen atoms join together to form a mole of hydrogen molecules in closed rigid vessel with diathermic walls:
    $$H(g)+H(g)\longrightarrow { H }_{ 2 }(g)$$
    Solution
    $$H_{2}$$ has two atoms. So, a mole of $$H_{2}$$ should have 1 mole of $$H_{2}$$ molecules, and when broken down into atoms, 2 moles of atoms.
    $$H(g)+H(g)\rightarrow H_{2}(g)$$.
    So, from the above reaction $$w<0$$.
  • Question 6
    1 / -0
    The difference between the heat of reaction at constant pressure and constant volume for the reaction given below at $${25}^{o}C$$ in KJ is: 
    $$\quad 2{ C }_{ 6 }{ H }_{ 6(l) }+15{ O }_{ 2(g) }\longrightarrow 12{ CO }_{ 2(g) }+6{ H }_{ 2 }{ O }_{ (l) }$$
    Solution
    The difference between heats of reaction at constant pressure and constant volume for the following reaction at $$25^oC$$ in kJ
    $$2C_6H_{6_(l)}+15O_{2_(g)}\longrightarrow12CO_{2_(g)}+6H_2O_{(l)}$$
    $$\Delta n=12-15=-3$$
    $$\Delta H=\Delta E+RT\Delta n$$
    $$\Delta H-\Delta E=RT\Delta n$$
                        $$=(-3)\times8.314\times10^{-3}\times298$$
                        $$=-7.443\ kJ/mole$$
  • Question 7
    1 / -0
    The normal boiling point of a liquid A is 350 K. $$\Delta { H }_{ vap }$$ at normal boiling point is 35 KJ/mole. Pick out the correct statement(s). (Assume $$\Delta { H }_{ vap }$$ to be independent of pressure).
    Solution
    The equilibrium at the boiling point is
    $$A(1)\leftrightharpoons A(g); \Delta_{vap}H=35\ kJ/mol$$
    $$\Delta_{vap}S=\frac{\Delta_{vap}H}{350 K}=100\ J/Kmol$$
    At 350 K and 0.5 atm
    The boiling point $$(T_{vap})$$ will be lower at the decreased pressure.
    Since $$T_{vap}<35K, \Delta_{vap}S>100\ J/Kmol$$
  • Question 8
    1 / -0
    Given standard enthalpy of formation of $$CO$$ (-110 KJ $${ mol }^{ -1 }$$) and $$C { O }_{ 2 }$$ (-394 KJ $${ mol }^{ -1 }$$ ). The heat of combustion when one mole of graphite burns is:
    Solution
    Enthalpy of formation of $$CO=-110\, kJ/mol$$
    Enthalpy of formtaion of $$CO_{2}=-394\, kJ/mol$$
    $$C+O_{2}\rightarrow CO_{2}$$              $$\triangle H_{c}=-394\, kJ/mol$$

    Formation of Carbon monoxide
    $$C+\cfrac{1}{2}O_{2}\rightarrow CO$$           $$\triangle H_{c}^{'}=-110\, kJ/mol$$

    $$\Delta H=\Delta H_{c}- \Delta H_{c}^{'}$$
    $$=-394-(-110)$$
    $$=-394+110$$
    $$=-284\,kJ/mol$$

    Hence, the correct option is $$B$$
  • Question 9
    1 / -0
    For the reaction, $${ X }_{ 2 }{ O }_{ 4 }\left( l \right) \longrightarrow 2X{ O }_{ 2 }\left( g \right)$$
    $$\Delta U=2.1\ k\ cal$$, $$\Delta S=20\ cal\ { K }^{ -1 }$$ at 300 K Hence , $$\Delta G$$ is_________.
    Solution
    The change in Gibbs free energy is given by$$\Delta G=\Delta H -T\Delta S $$
    where,
    $$\Delta H=$$enthalpy of the reaction
    $$\Delta S=$$entropy of reaction

    Thus in order to determine $$\Delta G$$, the value of $$\Delta H$$ must be known. The value of $$\Delta H$ can be calculated by the reaction,$$\Delta H=\Delta U+\Delta n_gRT$$
    where,
    $$\Delta U=$$change in internal energy
    $$\Delta n_g=$$(number of moles of gaseous product)-(number of moles of gaseous reactant)$$=2-0=2$$
    $$R=$$gas constant$$=2\ cal$$

    $$\Delta U=2.1\ kcal=2.1\times10^3\ cal$$
    therefore,

    $$\Delta H=(2.1\times10^3)+(2\times2\times300)=3300\ cal$$

    Hence,
    $$\Delta G=\Delta -T\Delta S $$
    $$\Delta G=3300 -(300\times20)$$
    $$\Delta G=-2700\ cal$$
    $$\Delta G=-2.7\ kcal$$

























  • Question 10
    1 / -0
    The heat liberated on complete combustion of 1 mole of $${ CH }_{ 4 }$$ gas to $${ CO }_{ 2 }\left( g \right)$$ and $${ HO }_{ 2 }\left( l \right)$$ is 890 KJ. Calculate the heat evolved by 2.4 L of $${ CH }_{ 4 }$$ on complete combustion.
    Solution
    Given
    The volume of $$!\ mol$$ of methane at $$298\ K$$ and $$1\ atm$$ pressure is $$24L$$. Let's calculate the moles of methane for it's $$2.4L$$ as
    $$=2.4\left(\frac{1\ mole}{24\ L}\right)$$
    $$=0.10\ mol$$
    Now, it says that combustion of $$1\ mol$$ of methane generates $$890\ J$$ of heat. We could calculate the heat generated by the combustion of $$0.10\ moles$$ of methane as:
    $$=0.10\ mol\left(\frac{890\ kJ}{1\ mole}\right)$$
    $$=89kJ$$
    Therefore, 89kJ of heat will be evolved by the combustion of 2.4L of methane























Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now