Self Studies

Equilibrium Test - 57

Result Self Studies

Equilibrium Test - 57
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    For the reaction $$PCl_{5(g)} \rightleftharpoons PCl_{3(g)} + Cl_{2(g)}$$, the forward reaction at constant temperature is favoured by:
    Solution
    $$PCl_5(g)\rightleftharpoons PCl_3(g) + Cl_2(g)$$
    In order for a forward reaction to take place, increase in the concentration of reactants is necessary. Here more concentration of $$PCl_5$$ leads to faster dissociation of it.
  • Question 2
    1 / -0
    When $$0.1\ mol$$ arsenic acid, $$H_{2}AsO_{4}$$ is dissolved in $$1L$$ buffer solution of $$pH = 4$$, which of the following hold good? $$K_{1} = 2.5\times 10^{-4}, K_{2} = 5\times 10^{4}, K_{3} = 2\times 10^{-23}$$ for arsenic acid $$['< <'$$ sign denotes that the higher concentration is at least $$100$$ times more than the lower one]. 
    Solution
    $$ \begin{array}{l} p H=4 \\ -\log \left[H^{+}\right]=4 \\ \text {  } \quad\left[H^+\right]=10^{-4} \end{array} $$
     $$ \frac{\left[\mathrm{H}_{3} \mathrm{AsO}_{4}\right]}{\left[\mathrm{H}_{2} \mathrm{AsO}_{4}^{-}\right]}=\frac{\left[\mathrm{H}^{+}\right]}{\mathrm{K}_{1}}=\frac{10^{-4}}{2.5 \times 10^{-4}} $$
     $$ \therefore \frac{1}{2.5} $$
     $$ \Rightarrow \quad\left[H_{3} As O_{4}\right]<\left[H_{2} As O_{4}^{-}\right] $$
     $$ \begin{aligned} \frac{\left[H_{2} A_{S} O_{4}^{-}\right]}{\left[H As O_{4}^{2-}\right]}=\frac{\left[H^{+}\right]}{K_{2}} &=\frac{10^{-4}}{5 \times 10^{4}} \\ &=\frac{10^{-4-4}}{5} \\ &=\frac{1}{5 \times 10^{8}} \end{aligned} $$
     $$ \Rightarrow\left[\mathrm{H}_{2} \mathrm{~A}{\mathrm{s}} \mathrm{O}_{4}^{-}\right]<<\left[\mathrm{H} \mathrm{A}{\mathrm{s}} \mathrm{O}_{4}^{2-}\right] $$
     $$ \begin{array}{c} {\left[\mathrm{HAsO}_{4}{ }^{2-}\right]<<\left[\mathrm{H}_{2} \mathrm{~A}{\mathrm{s}} \mathrm{O}_{4}^{-}\right]} \\ \text {not correct proof above. } \end{array} $$
     $$ \frac{\left[As O_{4}^{2-}\right]}{\left[H As O_{4}^{2-}\right]}=\frac{K_{3}}{\left[H^{+}\right]}=\frac{2 \times 10^{-23}}{10^{-4}} $$
     $$ =\frac{2}{10 \times 10^{18}} $$
     $$=\frac{1}{5 \times 10^{18}}$$
     $$ \begin{array}{l} \Rightarrow\left[\mathrm{A}s \mathrm{O}_{4}{ }^{2-}\right]<<\left[\mathrm{H} \mathrm{A}_{\mathrm{S}} \mathrm{O}_{4}{ }^{2-}\right] \\ \end{array} $$
  • Question 3
    1 / -0
    The volume of the reaction vessel containing an equilibrium mixture is increased in the following reation.
    $$SO_2Cl_{2(g)} \, \rightleftharpoons \, SO_{2(g)} \, + \, Cl_{2(g)}$$.
    When  equilibrium is re-established :
    Solution
    $$S{ O }_{ 2 }{ Cl }_{ 2\left( g \right)  }\rightleftharpoons S{ O }_{ 2\left( g \right)  }+{ Cl }_{ 2\left( g \right)  }$$
    When the volume of the vessel increases pressure decreases. Hence according to Le-Chatlier principle the equilibrium shift in a direction to increase the presure i.e., towards right as more gas molecules are produced.
    So, the amount of $${ Cl }_{ 2\left( g \right)  }$$ increases.
  • Question 4
    1 / -0
    For the given endothermic reaction, $$A(g)\rightleftharpoons  2B(g)$$. The variation in concentration due to different changes is plotted.
    Neglect the slope of change in concentration.
     
    Given the correct order of initials $$T(true)$$ or $$F(false)$$ for following statements:
    P) Effect$$-I$$ is decreasing in temperature at constant volume
    Q) Effect$$-II$$ is a decrease in total equilibrium pressure by changing the volume
    R) Effect$$- III$$ is the addition of $$B$$ only at constant volume

    Solution

  • Question 5
    1 / -0
    For a chemical reaction $$3 \left( g \right) +Y(g)\leftrightharpoons { X }_{ 3 }Y_{ (g) }$$, the amount of $${ X }_{ 3 }Y$$, at equilibrium is affected by:
    Solution
    Given reaction-

    $$3\times (g)+Y(g)\rightleftharpoons { X }_{ 3 }Y(g)$$ is a synthesis reaction.

    no. moles reactant $$=(3+1)=4$$

    no. moles product $$=1$$

    According to Lechatelier's Principle-

    $$Pressure$$: Increasing pressure shifts equilibrium to the side of reaction with fever moles of gaseous molecules. In this case, increasing pressure will shift the equilibrium to right.

    $$Temperature$$: The given reaction is a synthesis reaction. Synthesis reactions release energy, so they are exothermic. 
    Increasing the temperature will cause the equilibrium to shift towards the product side.

    $$Catalyst$$: catalysts speed up the reactions, but have no effect on the equilibrium.

    Hence, the correct option is A
  • Question 6
    1 / -0
    The osmotic pressure of equimolar solutions of a) $$Al_2(SO_4)_3$$, b) $$KCl$$ and c) $$sugar$$ will be:
    Solution
    Solution:-
    As we now that osmotic pressure is given as-
    $$\pi = iCRT$$
    As $$'i'$$ increases, $$′\pi′$$ also increases.
    $$i = 5$$ for $${Al}_{2} {\left( S{O}_{4} \right)}_{3}$$
    $$i = 2$$ for $$KCl$$
    $$i = 1$$ for glucose
    Therefore, osmotic pressure of given solutions will be in order-
    $$\left( a \right) > \left( b \right) > \left( c \right)$$
  • Question 7
    1 / -0
    Which of the following is a true statement:
    Solution
    Let's check the options one by one:
    (1) False. They are not the same.
    Ionisation constant of water is 
    $${ K }_{ a\left( { H }_{ 2 }O \right)  }=\dfrac { \left[ { H }^{ + } \right] \left[ { OH }^{ - } \right]  }{ \left[ { H }_{ 2 }O \right]  } $$
    Ionic product of water is 
    $${ K }_{ w }={ K }_{ a\left( { H }_{ 2 }O \right)  }\times \left[ { H }_{ 2 }O \right] \\ { K }_{ w }=\left[ { H }^{ + } \right] \left[ { OH }^{ - } \right] $$

    (2) False. Water is a weak electrolyte. In fact, pure water is a non-electrolyte.

    (3) False. $${ K }_{ w }={ K }_{ a\left( { H }_{ 2 }O \right)  }\times \left[ { H }_{ 2 }O \right] $$
    Clearly, $${ K }_{ w }>{ K }_{ a\left( { H }_{ 2 }O \right)  }$$
    value of ionic product is more than value of ionisation constant.

    (4) At 298K, pH of water is 7
    $$\therefore conc\quad of\quad \left[ { H }^{ + } \right] ={ 10 }^{ -7 }$$moles per litre
    1 mole contains $$6.023\times { 10 }^{ 23 }$$ ions
    $$\therefore conc\left[ { H }^{ + } \right] ={ 10 }^{ -7 }\times 6.023\times { 10 }^{ 23 }=6.023\times { 10 }^{ 16 }$$
  • Question 8
    1 / -0
    One litre of water contains $$1.0\times { 10 }^{ -7 }$$ moles of $${ H }^{ + }$$ ions. The degree of ionization of water is:
    Solution
    Volume=$$1L$$
    Density of water=$$1g/ml$$
    Mass of water=$$1000g$$
    Moles of water =$$\dfrac{1000}{18}$$
    $$H_2O\rightleftharpoons  H^{+}+OH^-$$
    $$t=O$$         $$C$$                    $$O$$          $$O$$
    $$t.teq$$          $$c(1-\alpha)$$         $$ e\alpha$$         $$ e\alpha$$
    $$c\alpha=10^{-7}$$
    $$\Rightarrow \dfrac{1000}{8}\times \alpha=10^{-2}$$
    $$\Rightarrow \alpha=1.8\times 10^{-9}$$
  • Question 9
    1 / -0
    The ionization constant of benzoic acid is $$6.46 \times 10^{-5}$$ and $$K_{sp}$$ for silver benzoate is $$2.5\times 10^{-13}$$. How many times is silver benzoate more soluble in a buffer of $$pH = 3.19$$ compared to its solubility in pure water?
    Solution
    Since $$pH=3.19$$
    $$[H_3O^+]=6.46\times10^{-4}\ M$$
    $$C_6H_5COOH+H_2O\leftrightharpoons C_6H_5COO^-+H_3O$$
    $$K_a=\dfrac{[C_6H_5COO^-][H_3O^+]}{[C_6H_5COOH]}$$
    $$\dfrac{[C_6H_5COOH]}{[C_6H_5COO^-]}=\dfrac{[H_3O^+]}{K_a}=\dfrac{6.46\times10^{-4}}{6.46\times10^{-5}}=10$$
    Let the solubility of $$C_6H_5COOAg$$ be $$x\ mol/L$$
    Then,
    $$[Ag^+]=x$$
    $$[C_6H_5COOH]+[C_6H_5COO^-]=x$$
    $$10[C_6H_5COO^-]+[C_6H_5COO^-]=x$$
    $$[C_6H_5COO^-]=\dfrac{x}{11}$$
    $$K_{sp}[AG^+][C_6H_5COO^-]$$
    $$2.5\times10^{-13}=x\left(\dfrac{x}{11}\right)$$
    $$x=1.66\times10^{-6}\ mol/L$$
    Thus, the solubility of silver benzoate in a pH 3.19 solution is $$1.66\times10^{-6}\ mol/L$$
    Now, let the solubility of $$C_6H_5COOAg$$ be $$x'\ M$$
    Then, $$[Ag^+]=x' \ M$$ and $$[C_6H_5COO^-]=x'\ M$$
    $$K_{sp}=[Ag^+][C_6H_5COO^-]$$
    $$K_{sp}=(x')^2$$
    $$x'=\sqrt{K_{sp}}=\sqrt{2.5\times10^{-13}}=5\times10^{-7}\ mol/L$$
    $$\therefore \dfrac{x}{x'}=\dfrac{1.66\times10^{-6}}{5\times10^{-7}}=3.32$$
    Hence, $$C_6H_5COOAg$$ is approximately $$3.32$$ times more soluble in low pH solution.
  • Question 10
    1 / -0
    $$H_2(g)+I_2(g)\leftrightharpoons 2HI(g)$$
    The correct statement(s) regarding the above reaction is/are:
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now