Self Studies

Equilibrium Test - 57

Result Self Studies

Equilibrium Test - 57
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    For the reaction PCl5(g) PCl3(g)+Cl2(g)PCl_{5(g)} \rightleftharpoons PCl_{3(g)} + Cl_{2(g)}, the forward reaction at constant temperature is favoured by:
    Solution
    PCl5(g)PCl3(g)+Cl2(g)PCl_5(g)\rightleftharpoons PCl_3(g) + Cl_2(g)
    In order for a forward reaction to take place, increase in the concentration of reactants is necessary. Here more concentration of PCl5PCl_5 leads to faster dissociation of it.
  • Question 2
    1 / -0
    When 0.1 mol0.1\ mol arsenic acid, H2AsO4H_{2}AsO_{4} is dissolved in 1L1L buffer solution of pH=4pH = 4, which of the following hold good? K1=2.5×104,K2=5×104,K3=2×1023K_{1} = 2.5\times 10^{-4}, K_{2} = 5\times 10^{4}, K_{3} = 2\times 10^{-23} for arsenic acid [<<['< <' sign denotes that the higher concentration is at least 100100 times more than the lower one]. 
    Solution
    pH=4log[H+]=4  [H+]=104 \begin{array}{l} p H=4 \\ -\log \left[H^{+}\right]=4 \\ \text {  } \quad\left[H^+\right]=10^{-4} \end{array}
     [H3AsO4][H2AsO4]=[H+]K1=1042.5×104 \frac{\left[\mathrm{H}_{3} \mathrm{AsO}_{4}\right]}{\left[\mathrm{H}_{2} \mathrm{AsO}_{4}^{-}\right]}=\frac{\left[\mathrm{H}^{+}\right]}{\mathrm{K}_{1}}=\frac{10^{-4}}{2.5 \times 10^{-4}}
     12.5 \therefore \frac{1}{2.5}
     [H3AsO4]<[H2AsO4] \Rightarrow \quad\left[H_{3} As O_{4}\right]<\left[H_{2} As O_{4}^{-}\right]
     [H2ASO4][HAsO42]=[H+]K2=1045×104=10445=15×108 \begin{aligned} \frac{\left[H_{2} A_{S} O_{4}^{-}\right]}{\left[H As O_{4}^{2-}\right]}=\frac{\left[H^{+}\right]}{K_{2}} &=\frac{10^{-4}}{5 \times 10^{4}} \\ &=\frac{10^{-4-4}}{5} \\ &=\frac{1}{5 \times 10^{8}} \end{aligned}
     [H2 AsO4]<<[HAsO42] \Rightarrow\left[\mathrm{H}_{2} \mathrm{~A}{\mathrm{s}} \mathrm{O}_{4}^{-}\right]<<\left[\mathrm{H} \mathrm{A}{\mathrm{s}} \mathrm{O}_{4}^{2-}\right]
     [HAsO42]<<[H2 AsO4]not correct proof above.  \begin{array}{c} {\left[\mathrm{HAsO}_{4}{ }^{2-}\right]<<\left[\mathrm{H}_{2} \mathrm{~A}{\mathrm{s}} \mathrm{O}_{4}^{-}\right]} \\ \text {not correct proof above. } \end{array}
     [AsO42][HAsO42]=K3[H+]=2×1023104 \frac{\left[As O_{4}^{2-}\right]}{\left[H As O_{4}^{2-}\right]}=\frac{K_{3}}{\left[H^{+}\right]}=\frac{2 \times 10^{-23}}{10^{-4}}
     =210×1018 =\frac{2}{10 \times 10^{18}}
     =15×1018=\frac{1}{5 \times 10^{18}}
     [AsO42]<<[HASO42] \begin{array}{l} \Rightarrow\left[\mathrm{A}s \mathrm{O}_{4}{ }^{2-}\right]<<\left[\mathrm{H} \mathrm{A}_{\mathrm{S}} \mathrm{O}_{4}{ }^{2-}\right] \\ \end{array}
  • Question 3
    1 / -0
    The volume of the reaction vessel containing an equilibrium mixture is increased in the following reation.
    SO2Cl2(g) SO2(g) +Cl2(g)SO_2Cl_{2(g)} \, \rightleftharpoons \, SO_{2(g)} \, + \, Cl_{2(g)}.
    When  equilibrium is re-established :
    Solution
    SO2Cl2(g) SO2(g) +Cl2(g) S{ O }_{ 2 }{ Cl }_{ 2\left( g \right)  }\rightleftharpoons S{ O }_{ 2\left( g \right)  }+{ Cl }_{ 2\left( g \right)  }
    When the volume of the vessel increases pressure decreases. Hence according to Le-Chatlier principle the equilibrium shift in a direction to increase the presure i.e., towards right as more gas molecules are produced.
    So, the amount of Cl2(g) { Cl }_{ 2\left( g \right)  } increases.
  • Question 4
    1 / -0
    For the given endothermic reaction, A(g) 2B(g)A(g)\rightleftharpoons  2B(g). The variation in concentration due to different changes is plotted.
    Neglect the slope of change in concentration.
     
    Given the correct order of initials T(true)T(true) or F(false)F(false) for following statements:
    P) EffectI-I is decreasing in temperature at constant volume
    Q) EffectII-II is a decrease in total equilibrium pressure by changing the volume
    R) EffectIII- III is the addition of BB only at constant volume

    Solution

  • Question 5
    1 / -0
    For a chemical reaction 3(g)+Y(g)X3Y(g)3 \left( g \right) +Y(g)\leftrightharpoons { X }_{ 3 }Y_{ (g) }, the amount of X3Y{ X }_{ 3 }Y, at equilibrium is affected by:
    Solution
    Given reaction-

    3×(g)+Y(g)X3Y(g)3\times (g)+Y(g)\rightleftharpoons { X }_{ 3 }Y(g) is a synthesis reaction.

    no. moles reactant =(3+1)=4=(3+1)=4

    no. moles product =1=1

    According to Lechatelier's Principle-

    PressurePressure: Increasing pressure shifts equilibrium to the side of reaction with fever moles of gaseous molecules. In this case, increasing pressure will shift the equilibrium to right.

    TemperatureTemperature: The given reaction is a synthesis reaction. Synthesis reactions release energy, so they are exothermic. 
    Increasing the temperature will cause the equilibrium to shift towards the product side.

    CatalystCatalyst: catalysts speed up the reactions, but have no effect on the equilibrium.

    Hence, the correct option is A
  • Question 6
    1 / -0
    The osmotic pressure of equimolar solutions of a) Al2(SO4)3Al_2(SO_4)_3, b) KClKCl and c) sugarsugar will be:
    Solution
    Solution:-
    As we now that osmotic pressure is given as-
    π=iCRT\pi = iCRT
    As i'i' increases, π′\pi′ also increases.
    i=5i = 5 for Al2(SO4)3{Al}_{2} {\left( S{O}_{4} \right)}_{3}
    i=2i = 2 for KClKCl
    i=1i = 1 for glucose
    Therefore, osmotic pressure of given solutions will be in order-
    (a)>(b)>(c)\left( a \right) > \left( b \right) > \left( c \right)
  • Question 7
    1 / -0
    Which of the following is a true statement:
    Solution
    Let's check the options one by one:
    (1) False. They are not the same.
    Ionisation constant of water is 
    Ka(H2O) =[H+][OH] [H2O]  { K }_{ a\left( { H }_{ 2 }O \right)  }=\dfrac { \left[ { H }^{ + } \right] \left[ { OH }^{ - } \right]  }{ \left[ { H }_{ 2 }O \right]  } 
    Ionic product of water is 
    Kw=Ka(H2O) ×[H2O]Kw=[H+][OH] { K }_{ w }={ K }_{ a\left( { H }_{ 2 }O \right)  }\times \left[ { H }_{ 2 }O \right] \\ { K }_{ w }=\left[ { H }^{ + } \right] \left[ { OH }^{ - } \right] 

    (2) False. Water is a weak electrolyte. In fact, pure water is a non-electrolyte.

    (3) False. Kw=Ka(H2O) ×[H2O] { K }_{ w }={ K }_{ a\left( { H }_{ 2 }O \right)  }\times \left[ { H }_{ 2 }O \right] 
    Clearly, Kw>Ka(H2O) { K }_{ w }>{ K }_{ a\left( { H }_{ 2 }O \right)  }
    value of ionic product is more than value of ionisation constant.

    (4) At 298K, pH of water is 7
    concof[H+]=107\therefore conc\quad of\quad \left[ { H }^{ + } \right] ={ 10 }^{ -7 }moles per litre
    1 mole contains 6.023×10236.023\times { 10 }^{ 23 } ions
    conc[H+]=107×6.023×1023=6.023×1016\therefore conc\left[ { H }^{ + } \right] ={ 10 }^{ -7 }\times 6.023\times { 10 }^{ 23 }=6.023\times { 10 }^{ 16 }
  • Question 8
    1 / -0
    One litre of water contains 1.0×1071.0\times { 10 }^{ -7 } moles of H+{ H }^{ + } ions. The degree of ionization of water is:
    Solution
    Volume=1L1L
    Density of water=1g/ml1g/ml
    Mass of water=1000g1000g
    Moles of water =100018\dfrac{1000}{18}
    H2O H++OHH_2O\rightleftharpoons  H^{+}+OH^-
    t=Ot=O         CC                    OO          OO
    t.teqt.teq          c(1α)c(1-\alpha)         eα e\alpha         eα e\alpha
    cα=107c\alpha=10^{-7}
    10008×α=102\Rightarrow \dfrac{1000}{8}\times \alpha=10^{-2}
    α=1.8×109\Rightarrow \alpha=1.8\times 10^{-9}
  • Question 9
    1 / -0
    The ionization constant of benzoic acid is 6.46×1056.46 \times 10^{-5} and KspK_{sp} for silver benzoate is 2.5×10132.5\times 10^{-13}. How many times is silver benzoate more soluble in a buffer of pH=3.19pH = 3.19 compared to its solubility in pure water?
    Solution
    Since pH=3.19pH=3.19
    [H3O+]=6.46×104 M[H_3O^+]=6.46\times10^{-4}\ M
    C6H5COOH+H2OC6H5COO+H3OC_6H_5COOH+H_2O\leftrightharpoons C_6H_5COO^-+H_3O
    Ka=[C6H5COO][H3O+][C6H5COOH]K_a=\dfrac{[C_6H_5COO^-][H_3O^+]}{[C_6H_5COOH]}
    [C6H5COOH][C6H5COO]=[H3O+]Ka=6.46×1046.46×105=10\dfrac{[C_6H_5COOH]}{[C_6H_5COO^-]}=\dfrac{[H_3O^+]}{K_a}=\dfrac{6.46\times10^{-4}}{6.46\times10^{-5}}=10
    Let the solubility of C6H5COOAgC_6H_5COOAg be x mol/Lx\ mol/L
    Then,
    [Ag+]=x[Ag^+]=x
    [C6H5COOH]+[C6H5COO]=x[C_6H_5COOH]+[C_6H_5COO^-]=x
    10[C6H5COO]+[C6H5COO]=x10[C_6H_5COO^-]+[C_6H_5COO^-]=x
    [C6H5COO]=x11[C_6H_5COO^-]=\dfrac{x}{11}
    Ksp[AG+][C6H5COO]K_{sp}[AG^+][C_6H_5COO^-]
    2.5×1013=x(x11)2.5\times10^{-13}=x\left(\dfrac{x}{11}\right)
    x=1.66×106 mol/Lx=1.66\times10^{-6}\ mol/L
    Thus, the solubility of silver benzoate in a pH 3.19 solution is 1.66×106 mol/L1.66\times10^{-6}\ mol/L
    Now, let the solubility of C6H5COOAgC_6H_5COOAg be x Mx'\ M
    Then, [Ag+]=x M[Ag^+]=x' \ M and [C6H5COO]=x M[C_6H_5COO^-]=x'\ M
    Ksp=[Ag+][C6H5COO]K_{sp}=[Ag^+][C_6H_5COO^-]
    Ksp=(x)2K_{sp}=(x')^2
    x=Ksp=2.5×1013=5×107 mol/Lx'=\sqrt{K_{sp}}=\sqrt{2.5\times10^{-13}}=5\times10^{-7}\ mol/L
    xx=1.66×1065×107=3.32\therefore \dfrac{x}{x'}=\dfrac{1.66\times10^{-6}}{5\times10^{-7}}=3.32
    Hence, C6H5COOAgC_6H_5COOAg is approximately 3.323.32 times more soluble in low pH solution.
  • Question 10
    1 / -0
    H2(g)+I2(g)2HI(g)H_2(g)+I_2(g)\leftrightharpoons 2HI(g)
    The correct statement(s) regarding the above reaction is/are:
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now